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List of Abbreviations 

 

The following abbreviations and symbols are used in this guide: 

 

AAF Annuity adjustment factor 

ac.APM The option pricing tool described in these notes 

ac.SRM The interest rate derivative pricing tool  

APM Asset price model 

ATM 
At-the-money, the situation when the price of the underlying security equals the 

strike price 

ATMF 
At-the-money forward option, the situation when the price of the underlying 

security equals the option strike price on the forward market 

bps Basis point (same as pip, equal 1/100th of 1%) 

BS Black-Scholes 

BSM Black-Scholes-Merton 

BV Book Value 

CCY Currency 

CDS Credit default swap 

DC Deal contingent 

DTCC Depository Trust And Clearing Corporation 

ES Expected shortfall 

FMV Fair market value 

FV Forward value 

FXIP FX Information Portal Bloomberg function 

G/L Gain and loss 

M&A Merger and acquisition 

MTM Marked-to-market 

OCI Other comprehensive income 

OECD Guidelines 
“BEPS Actions 8 – 10, Financial Transactions”, a draft published in July – 

September 2018 for the purposes of public discussion 

OV Bloomberg option valuation tool 

P&L Profit and loss 

Pip Percentage in point (same as bps, equal 1/100th of 1%) 

PP Purchase Price 

PPE Purchase price equation 

SRM Short rate model of interest rates 

VaR Value-at-risk 
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Section 1 Introduction 
  

  

…. 

1.1 Applications of derivative pricing in transfer pricing 

Derivative pricing based on theoretical financial models is not a direct benchmarking approach which is 

generally preferred in transfer pricing analysis. It is applied in cases when it is not feasible to identify 

comparable transactions with publicly available market prices. The approach based on the fair market 

valuation (FMV) of derivative instruments is typically classified as “Other Methods” under the hierarchy of 

transfer pricing methods.  

After the FMV approach is selected as a transfer pricing valuation model (under the “Other Methods” 

category), a further review is required to identify a correct FMV model. The choice of the model depends 

on the derivative type and review of risks of the counterparties in the derivative contracts. 

All models discussed in this guide were applied in a specific transfer pricing project. In this section, the 

context, in which the models were applied, is summarized in the format of a collection of stylized transfer 

pricing examples. 

Example 1: Valuation of convertible bonds. 

 

Example 2: Valuation of downstream loan guarantee. 

 

Example 3. Valuation of upstream guarantee. 

 

Example 4: Valuation of commodity call option. 

 

Example 5: Valuation of residual value risk contracts. 

 

Example 6: Share purchase commitment.  

 

Example 7: Capacity guarantees. 
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1.2 Terminology 

The following terminology is used I the guide. 

► Black-Scholes model – derivative pricing model for the underlying asset which price follows 

geometric Brownian motion. 

► Black model – derivative pricing model for the bond underlying asset 

► CDS model – option valuation model in which movement in the asset value is related to the asset 

default state 

► Default hazard rate – marginal probability of default conditional on survival event 

► Implied default hazard rate – the default hazard rate derived from the market bond data 

► Implied premium schedule 

► Arrow-Debreu prices – prices of basis states which do not intersect and span the universe of all 

possible states. Arrow-Debreu prices are used as a basis to derive the price of an arbitrary 

derivative instrument. 

► Risk-neural probabilities – forward value (FV) of the Arrow-Debreu prices. FV adjustment is applied 

to ensure that risk-neutral probabilities sum up to one. 

► Annuity adjustment factor (AAF) – the factor applied to convert fixed price into the equivalent 

sequence of periodic payments 

► Interest rate parity – refers to equation (2.10) used to derive the FX forward price. 

► Option intrinsic value – the difference between the spot and strike price: 𝑉 = 𝑆 − 𝐾 

► Option time value – the difference between the option value and the option intrinsic value. The 

option price is presented as a sum of option intrinsic value and time value. 

► FX swap – a combination of FX spot and forward contracts 

► Cross-currency swap – interest rate swap of interest rates denominated in different currencies. 

► Worst Loss – the highest potential loss in the transaction risk exposure. The metrics is applied as 

a risk measure in the risk assessment analysis. 

 

1.3 Arbitrage vs insurance pricing approaches 

The arbitrage pricing and insurance are two conceptually different approaches to price guarantee/insurance 

contracts. The arbitrage approach views the contract as a derivative instrument and prices it based on 

market prices. Insurance approach views the contract as an insurance agreement and prices it based on 

historical data and respective expected losses and return to risk components. 

Despite conceptual differences of the two approaches, the pricing equations under two approaches can 

look very similar. The difference typically stems from the interpretation of the equation parameters and not 

the form of the equation. Under the insurance approach parameters are derived based on statistical 

analysis applied to historical data while under the arbitrage approach the parameters are derived based on 

market price data and referred typically as ‘implied’ parameter.1 For example, under the insurance approach 

the risk of default on a specific debt instrument would be estimated using historical default data while under 

                                                      

1 Implied parameter refers to parameter implied by market data as opposed to estimated from historical data. 
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the arbitrage approach the risk of default would be estimated based on the instrument market risk premium. 

The default rate would be derived from the market premium and interpreted as default rate ‘implied’ by 

market pricing.  

In most cases, in transfer pricing analysis the arbitrage pricing approach is preferred over the insurance 

approach. The highest ranking is assigned in transfer pricing analysis to the pricing method which is based 

on a search for comparable transactions traded in the market and using market data to price the tested 

transaction. In finance arbitrage pricing refers to a more generic approach which may be based directly on 

identifying direct comparable instruments but may also apply pricing methods based on complex trading 

strategies of the identified instruments. 

It is recommended when possible to apply both the insurance and arbitrage pricing approaches and 

compare the results of the analysis. Insurance approach is based exclusively on historical data while the 

arbitrage approach, which is based on market prices, takes into account forward-looking expectations of 

the agents trading in the market. Therefore, comparison of the results under the two approaches effectively 

implies comparison of the effect that historical and forward-looking information have on the results. The 

purpose of the comparison is to identify what different information is contained in the forward-looking 

expectations compared to the historical data. It’s natural to expect reasonably similar results under the two 

approaches in stable markets and different results in volatile markets or markets which go through 

significant transformations. 

This guide provides several examples which compare the results of valuation analysis performed under the 

two approaches. 
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Section 2 Models 
  

  

The stock, commodity, and FX prices (denoted as  𝑆𝑡) are typically modelled using geometric Brownian 

motion, which is described by the following stochastic differential equation 

(2.1)  𝑆𝑡+𝑑𝑡 = 𝑆𝑡 × 𝑒
𝜇𝑑𝑡+𝜎√𝑑𝑡𝜀𝑡 

where 𝜀𝑡~𝑁(0,1). Parameters 𝜇 and 𝜎 are interpreted as drift and volatility parameters. The equation can 

be equivalently represented as follows. 

(2.2)  ∆ ln 𝑆𝑡 = 𝜇𝑑𝑡 + 𝜎√𝑑𝑡𝜀𝑡 

The following notation is used in the price equations below: 

1. 𝑇 is the derivative contract maturity term 

2. 𝑡 is a date between zero and maturity term 𝑇 

3. 𝑆𝑡 is the spot price in period 𝑡; 𝑆 is the spot price in period 𝑡 = 0 

4. 𝐾 is the derivative contract strike price 

5. 𝜎 is the spot price volatility (measured as standard deviation of ∆ ln 𝑆𝑡 process) 

6. 𝑟 is the risk-free rate 

7. 𝑑 is the dividend rate (in FX or commodity price derivative contracts parameter 𝑑 is interpreted 

respectively as commodity lease rate (or negative of commodity storage cost) and risk-free of return 

in foreign country)  

 

2.1 Stocks 

The stock price is assumed to pay regular dividends at  annual rate 𝑑 (𝑑 =
𝐷

𝑆
, where 𝐷 is fixed annual 

dividend payment). 

2.1.1 Futures 

Definition: futures contract 

(2.3)  𝐹𝑇 = 𝑆 × 𝑒(𝑟−𝑑)×𝑇 

 

2.1.2 Forwards 

Definition: forward contract 

In forwards, the strike price 𝐾 can be set different from the futures price 𝐹𝑡. The value of the forward contract 

in period 𝑡 is  
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(2.4)  𝑉𝑡 = 𝑒−𝑟(𝑇−𝑡) × (𝑆𝑡 × 𝑒
(𝑟−𝑑)(𝑇−𝑡) − 𝐾) = 𝑆𝑡 × 𝑒

−𝑑(𝑇−𝑡) − 𝐾𝑒−𝑟(𝑇−𝑡) 

 

2.1.3 Deal contingent forwards 

Definition: A deal contingent (DC) forward is a specialised forward FX contract. The hedging buyer is only 

obliged to fulfil the contract if a planned major transaction, such as an acquisition, occurs. The DC forward 

requires no payment upfront, locks in a forward rate, and disappears with zero fee if the M&A deal fails. 

The DC forward contracts are issued with banks. A bank must have the following characteristics to issue a 

DC contract.2 

1. Risk appetite and balance sheet exposure to the FX risk. There’s no traded market in deal-

contingent hedges, so the bank can’t lay off this risk. 

2. Comprehensive M&A knowledge to analyze the purchase agreement and conditions precedent. 

The bank needs to have specialist M&A expertise and hedging capabilities to offer competitive 

hedge pricing even when they have no role in the underlying M&A. 

3. The ability to competitively and consistently price hedges, execute them effectively and quantify 

and manage the risk associated with them (which requires awareness of likely drivers of FX 

movements and interest rates). The bank must have an established transaction history in order to 

achieve a competitive price. 

4. The ability to coordinate multiple units across the bank (as well as their legal division) in order to 

optimize the speed of the DC forward execution (timing is an important factor in the execution of 

DC forward contracts). 

As illustrated in the example discussed in Appendix Error! Reference source not found., the ATM put 

option is the optimal strategy from the Worst Loss risk measure metrics. Therefore, if a risk manager is 

considering a hedging strategy that is not based on deal contingent instruments, the put option price is the 

minimum price that provides a 100% risk exposure hedging. 

The objective of the DC forward contracts traded in the OTC markets is to reduce the hedging costs by (i) 

reducing the upside gain exposure; and (ii) by moving some of the risk to the bank that sells the contract. 

Because the ATM put option is effectively the upper bound for the DC forward, the premium on the DC 

forward is estimated in percentage of the put option premium. The actual percentage negotiated by the 

bank and the contract buyer depends on the risk appetite of the bank and the buyer, the specific facts and 

circumstances of the deal, as well as other factors. The price of the DC forward is expressed by the following 

equation. 

(2.5)  𝐹𝑇
𝐷𝐶 = 𝐹𝑇 + 𝛼 × 𝑃𝑇

𝑝𝑢𝑡
 

where 𝑃𝑇
𝑝𝑢𝑡

 is estimated as a percentage of the forward notional amount and parameter 𝛼 is typically set 

within [40%, 70%] range. 

                                                      

2 https://www.nomuraconnects.com/focused-thinking-posts/deal-contingent-hedging-a-flexible-way-to-mitigate-risk/.  

https://www.nomuraconnects.com/focused-thinking-posts/deal-contingent-hedging-a-flexible-way-to-mitigate-risk/
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2.1.4 Call and Put options 

Definition: call 

Definition: put 

Definition: warrant is a security that entitles the holder to buy the underlying stock of the issuing company 

at a fixed price called exercise price until the expiry date. 

Call option 

(2.6)  𝑉𝑐𝑎𝑙𝑙 = 𝑁(𝑑1) × 𝑆𝑒
−𝑑𝑇 − 𝑁(𝑑2) × 𝐾𝑒

−𝑟𝑇 

Put option 

(2.7)  𝑉𝑝𝑢𝑡 = −𝑁(−𝑑1) × 𝑆𝑒
−𝑑𝑇 +𝑁(−𝑑2) × 𝐾𝑒

−𝑟𝑇 

where parameters 𝑑1 and 𝑑2 are estimated as 

(2.8)  {
𝑑1 =

1

𝜎√𝑇
× [ln

𝑆

𝐾
+ (𝑟 − 𝑑 +

𝜎2

2
)𝑇]

𝑑2 = 𝑑1 − 𝜎√𝑇

 

An alternative presentation of the call and put option equations is presented in (4.11) - (4.13). The 

alternative representation substitutes spot rates with forward rates (using equation (2.3)). Note that option 

prices in the alternative presentation do not depend on dividend rate 𝑑 parameter.  

To ensure consistency of equations (2.6) - (2.8) with alternative representation of the equations (4.11) - 

(4.13), the dividend rate in the equations (2.6) - (2.8) is estimated as the implied dividend based on the 

equation (2.3): 

(2.9)  𝑑 = 𝑟 −
ln
𝐹𝑇
𝑆
𝑇
  

If implied dividend rate set based on equation (2.9), then the futures are priced consistently with call and 

put options. 

2.2 Commodities 

 

2.3 Currency FX 

Suppose that the FX spot and forward rates are quoted relative to the local currency (we assume USD as 

the local currency). Specifically, 𝑆 is the current spot price and 𝐹𝑡 is the forward price of one unit of foreign 
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currency in local currency units (e.g. USD/CAD is the number of units of USD currency paid for one CAD 

currency unit).3 

2.3.1 Forwards 

The price of a forward is described by the following equation: 

(2.10)  𝐹𝑡 = 𝑆 × 𝑒
(𝑟−𝑟𝑓)×𝑡 

where 𝑟 is the local (US) risk-free rate, 𝑟𝑓 is the risk-free rate in the foreign country, and 𝑡 is the maturity 

term of the forward contract. The equation is similar to the forward price equation for the stock forward if 
the dividend rate is replaced by the 𝑟𝑓 parameter. The foreign currency can be viewed as an asset which is 

similar to stock but has 𝑟𝑓 as an equivalent of dividend rate. 

Equation (2.10) is a well-known interest rate parity relationship which can be interpreted as follows from 

the arbitrage-free pricing perspective.  

Arbitrage interpretation of equation (2.10). (i) Convert 1 USD into 
1

𝑆
 CAD, (ii) invest 

1

𝑆
 CAD to generate risk 

free return 
1

𝑆
× 𝑒𝑟𝑓×𝑡 CAD; (iii) convert it back to 

𝐹𝑡

𝑆
× 𝑒𝑟𝑓×𝑡  USD; (iv) verify that the generated return equals 

to the return on 1 USD: 
𝐹𝑡

𝑆
× 𝑒𝑟𝑓×𝑡 = 𝑒𝑟×𝑡. 

For a FX forward contact with 𝐹0 fixed forward rate, the fair market value at a given period 𝑡 is equal to 

(2.11)  𝑃 = 𝑆 × 𝑒𝑟𝑓×𝑡 − 𝐹0 × 𝑒
−𝑟×𝑡 = (𝐹𝑡 − 𝐹0) × 𝑒

−𝑟×𝑡 

 

 

2.3.2 Call and put options 

The equations for the FX call and put options are derived similarly to the equations for the stock call and 
put options by replacing dividend rate in equations (2.6) - (2.8) with the 𝑟𝑓 parameter.4  

Call option 

(2.12)  𝑉𝑐𝑎𝑙𝑙 = 𝑁(𝑑1) × 𝑆𝑒
−𝑟𝑓𝑇 − 𝑁(𝑑2) × 𝐾𝑒

−𝑟𝑇 

Put option 

(2.13)  𝑉𝑝𝑢𝑡 = −𝑁(−𝑑1) × 𝑆𝑒
−𝑟𝑓𝑇 + 𝑁(−𝑑2) × 𝐾𝑒

−𝑟𝑇 

where parameters 𝑑1 and 𝑑2 are estimated as 

                                                      

3 𝑆𝑈𝑆𝐷/𝐶𝐴𝐷 = 0.7 implies that 0.75 USD dollars are paid for 1 CAD dollar. 

4 For additional details see https://en.wikipedia.org/wiki/Foreign_exchange_option.  

https://en.wikipedia.org/wiki/Foreign_exchange_option
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(2.14)  {
𝑑1 =

1

𝜎√𝑇
× [ln

𝑆

𝐾
+ (𝑟 − 𝑟𝑓 +

𝜎2

2
)𝑇]

𝑑2 = 𝑑1 − 𝜎√𝑇

 

 

2.4 CDS 

 

2.5 Leases 

 

Lease timeline 

 

Typically, all lease contracts in the portfolio are renewed at the same date (date 𝑡𝑙 is the same for each 

lease contract). 

2.5.1 Terminology 

The following terminology is used in the leases fee calculations:5 

1. Capitalized Cost – the cost of the vehicle after subtracting any down payment or trade-in allowance. 

The capitalized cost is denoted as 𝑋𝐶; 

2. Residual Value – the amount the vehicle is worth at the end of the lease. The residual value is 

denoted as 𝑋𝑅; 

3. Depreciation – the amount the vehicle has lost in value during the lease. Depreciation is calculated 

as 𝑋𝐷 = 𝑋𝐶 − 𝑋𝑅; 

4. Lease Term – the number of months until the lease contract is terminated. The lease term is 

denoted as 𝑇; 

5. Money Factor (or Lease Factor) – the finance charge, usually expressed as a fraction. The money 

factor is denoted as 𝑓; 

6. US railcar retrofit schedule – The U.S. Department of Transportation has released a final rule 

unveiling a new enhanced tank car standard and risk-based retrofitting schedule for older tank cars 

                                                      

5 http://www.realcartips.com/leasing/0434-how-to-calculate-lease-payments.shtml 

asset  

manufacturing  

asset purchase  

date and lease  

issue date 

residual value  

guarantee renewal 

date 

lease contract 

termination 

date 

𝑡𝑚 𝑡𝑝 𝑡𝑙 𝑡∗ 
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carrying crude oil and ethanol. While certain tank cars in crude oil service must be retrofitted as 

soon as 2017, the initial retrofit requirements for tank cars carrying ethanol don’t begin until 20236. 

 

2.5.2 Model 

The lease model consists of the following components: 

(i) Calculation of lease monthly payments; 

(ii) Estimation of the lease asset residual value; 

(iii) Lease value stochastic model 

Each component is reviewed in detail below. 

 Lease monthly payments 

The monthly lease payment is calculated in the lease model as follows. The lessor acquires the car at price 

𝑋𝐶 and predicts that the cost at the end of the lease will be equal to 𝑋𝑅. The monthly lease amount consists 

of the following components: (i) compensation for the car depreciation; (ii) lease interest payment; and (iii) 

lease taxes. The three components of the total lease payment (𝐹 = 𝐹𝐷 + 𝐹𝐼 + 𝐹𝑇) are calculated as follows: 

1. Depreciation compensation. The monthly payment is calculated directly as 𝐹𝐷 =
𝑋𝐶−𝑋𝑅

𝑇
; 

2. Interest. The interest is calculated as 𝐹𝐼 = 𝑓 × (𝑋𝐶 + 𝑋𝑅) = (2𝑓) ×
𝑋𝐶+𝑋𝑅

2
. Note that 2𝑓 is a monthly 

lease fee factor and 2𝑓 × 1,200 = 𝑓 × 2,400 is interpreted as the annual interest rate (calculates as 

% of 100 nominal amount). The value 
𝑋𝐶+𝑋𝑅

2
 is interpreted as the average car value during the lease 

term. The interest expense is calculated as the percentage of the average car value. 

3. Taxes. The taxes are calculated as a fixed percentage of the before-tax lease payment: 𝐹𝑇 = 𝑡 ×
(𝐹𝐷 + 𝐹𝐼). 

 Lease residual value 

The following residual value specification is used in these notes: 

(2.15)  𝑉𝑡 = 𝑉0 × 𝑒
−∫ 𝜆(𝑠)𝑑𝑠+𝜎𝑊𝑡

𝑡
0 = 𝑉0 × 𝑒

−Λ𝑡+𝜎𝑊𝑡 

where 𝑊𝑡 is a diffusion process. Under the model specification, the residual value decreases exponentially 

over time and is described by geometric Brownian motion. Deviation of the actual depreciation from the 

expected depreciation natural logarithm is described by a diffusion process: 

(2.16)  𝑣𝑡 = 𝑣0 − Λ𝑡 + 𝜎𝑊𝑡 

where 𝑣𝑡 = ln𝑉𝑡. We refer to function Λ𝑡 as the expected depreciation term structure. The function Λ𝑡 

may have a general non-linear specification so that it can produce an arbitrary depreciation term structure.7 

                                                      

6 http://ethanolproducer.com/articles/12189/dot-rule-includes-new-tank-car-standards-retrofit-schedule  

7 The function Λ𝑡 = − ln(1 − 𝜆𝑡) produces a standard book-value expected linear depreciation term structure: 𝑉𝑡 = 𝑉0 × (1 − 𝜆𝑡). 

http://ethanolproducer.com/articles/12189/dot-rule-includes-new-tank-car-standards-retrofit-schedule
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There are other alternative models of the leased asset residual value. Below we describe briefly some 

alternative model specifications. 

[summary of literature] 

2.5.3 Modelling residual risk 

There are two alternative approaches to residual value risk, which are discussed in these notes. 

1. Residual value risk, which results from the destruction of the underlying asset value. The risk is 

modelled using a binomial model with the absorbing state (which corresponds to the destruction of 

the underlying asset). The hazard rate of the asset destruction is described by function 𝛾(𝑠). 

2. Residual value risk, which results from the accelerated depreciation of the underlying market asset 

(compared to the expected depreciation). The accelerated depreciation can be due to technological 

changes, asset obsolescence risk, change in the regulations, and other. The risk is modelled using 

the geometric Brownian motion specification of the residual value (described in Section 2.1.2.2). 

The third alternative approach is to use a combination of the two above residual value models. 

Under the first approach, the model of the lease residual value guarantee is similar the credit default swap 

(CDS) pricing model. Under the first approach model of the lease residual value guarantee is similar the 

Black-Scholes (BS) put option model. A more detailed discussion of the alternative lease residual value 

guarantee models is presented in the sections below. 

 

2.6 Bonds 

 

2.6.1 Convertible bonds 

Definition: A convertible bond is a fixed-income corporate debt security that yields interest payments but 

can be converted into a predetermined number of common stock or equity shares. The conversion from the 

bond to stock can be done at certain times during the bond's life and is usually at the discretion of the 

bondholder. 

The terms of a standard convertible bond as presented on Bloomberg are shown in the exhibit below (the 

print screen was produced on 22 June 2020). 
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Exhibit 2.1 Terms of a convertible bond transaction 

 

The terms of the convertible bond are interpreted as follows. 

1. Par Amount (A = 1,000): the notional bond amount as of issue date. For convenience, the amount 

is presented in fixed 1,000 units. The terms of convertible bond are described respectively in terms 

of conversion of the bond 1,000 par value into shares. 

2. Conversion Price (P): share price applied to convert bond par value into shares.  

3. Conversion Ratio (R = A/P): number of shares into which bond par value is converted. 

4. Last conversion date: the latest date when the bond can be converted into stock (typically set one 

day prior to the maturity date).  

5. Stock Price (S): current stock price. 

6. Parity (= S x P / A): Immediate value of the convertible if converted, typically obtained as current 

stock price multiplied by the conversion ratio expressed for a base of 100. May also be known as 

Exchange Property. 

7. Premium: defined as current convertible price minus the parity. The premium can also be 

expressed as a percentage of parity. In the example above, the market price of the bond is 121.728. 

The premium equals 33.099 (= 121.728 – 88.714) or 37.214% (= 33.099 / 88.714). 

8. Initial Premium: premium at the bond issuance date. 

9. Bond floor: Value of the fixed income element of a convertible i.e. not considering the ability to 

convert into equities. 

10. Call features: The ability of the issuer (on some bonds) to call a bond early for redemption. This 

should not be mistaken for a call option. A Softcall would refer to a call feature where the issuer 

can only call under certain circumstances, typically based on the underlying stock price 

performance (e.g. current stock price is above 130% of the conversion price for 20 days out of 30 

days). A Hardcall feature would not need any specific conditions beyond a date: that case the issuer 

would be able to recall a portion or the totally of the issuance at the Call price (typically par) after a 

specific date. 

The diagram below shows the break-down of the bond total value into the bullet bond value (bond floor) 

and the value of the convertibility option. The diagram shows that in the presence of material value of the 
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convertibility option, the coupon rate can be set significantly lower than the discount rate applicable to the 

bon so that the bullet bond is priced significantly below the par value. The reduced value of the coupon 

payments is compensated to the lender by the option to convert the bond into the shares if the price of the 

shares increases in the future.8 

Exhibit 2.2 Break down of bond value into (i) bond floor and (ii) convertibility option value 

 

 

Note that if the convertibility option is not deeply out-of-the-money, the yield adjustment for bond 

convertibility can be quite material. To perform the adjustment, the following steps need to be performed: 

(i) the value of the convertibility option is estimated; (ii) the option value is subtracted from the bond price; 

and (iii) the yield rate is estimated based on the adjusted bond price.  

Convertible bonds are typically issued for companies with high risk and high potential growth. Low coupon 

payments allow the company which issues a convertible bond mitigate the risk of default at early growth 

stage when the earnings are low. The benefit to the lender is generated by the company growth potential. 

The details of convertibility option valuation are discussed in Section 4.4.3 and in Appendix Error! 

Reference source not found.. Some key considerations related to the convertible bond valuation are 

summarized below. 

1. If convertible bond is deep out-of-the-money (stock price is significantly lower than the strike 

price), then the option value can be assumed approximately equal to zero. 

2. All terms of the convertible bond should be considered since the terms such as soft call may have 

a significant impact on the value of convertibility option. 

3. The convertible bonds are typically issued to reduce the fixed income payouts of the bond 

instrument and compensate it with the potential benefit of the stock price upward movement. As a 

result, a convertible bond is a hybrid instrument which has both the features of bond and equity. 

4. The adjustment for convertibility option can be very significant and the convertibility option can 

effectively determine the bond value. 

5. The valuation of the convertibility option can be sensitive to the underlying assumptions and 

change materially with the change in the assumptions. 

                                                      

8 In the example, the bond is traded at par. Note that the price is determined by the market and can be above / below par starting from 
the bond issue date. 
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6. Due to properties described in items 4 and 5, it is generally recommended to exclude convertible 

bonds from the sample (unless the bond is deep out-of-the-money and convertibility option can be 

ignored). 

7. After performing the adjustment for bond convertibility option, the yield on the bond will generally 

be higher than the yield on a comparable bond issued by the same company. This is due to hybrid 

feature and higher risk of a convertible bond.  

The convertible bond can be modelled using the following 3-state and 3-asset model: 

Exhibit 2.3 Tree modelling of convertible bond process 

 

The three assets are represented by a risk-free bond, non-convertible bond price and stock price.  

2.7 Loan guarantee models 

A loan guarantee model is an extension of a CDS model which is described by a trinomial tree. The 

additional states are included to (i) either model counterparty (guarantor) risk in a downstream loan 

guarantee arrangement or (ii) model uncertain recovery rate on defaulted loan in an upstream loan 

guarantee arrangement. 

2.7.1 Downstream loan guarantee 

The downstream loan guarantees are discussed in detail in the ‘Financial Guarantees’ guide. This guide 

presents the model from the perspective of derivative pricing and risk-neutral valuation. Schematically, the 

downstream guarantee model is described by the following diagram. 

Exhibit 2.4 Structure of a downstream loan guarantee transaction 
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In a downstream loan guarantee transaction, the guarantee is provided on by the Parent entity to the Bank 
for the Loan made to the Subsidiary entity. The problem is described by a three-state three-asset model, 
where the three states are (i) no default, (ii) default by the Subsidiary, and (iii) default by both the Parent 
and the Subsidiary; and three assets are (i) risk-free loan, (ii) loan issued by the Subsidiary on a stand-
alone basis, and (iii) loan issued by the Parent group. 

In a downstream loan guarantee model, the guarantee is provided by the Parent group for the purpose of 

the Subsidiary credit enhancement and respective reduction in the borrowing costs. Effectively, the 

guaranteed loan can be viewed as the loan made to the Parent group. The model is similar to a CDS model 

but also takes into consideration the possibility of the Parent group default (counterparty risk). 

From the theoretical perspective, the downstream loan guarantee can be modelled as a sequence of binary 

models described by the following diagram. 

Exhibit 2.5 Tree modelling of a downstream loan guarantee 

 

 

2.7.2 Upstream loan guarantee 

The difference of an upstream from the downstream loan guarantee is that the loan made to the Parent is 

guaranteed by Subsidiary entity. The purpose of the explicit loan guarantees is to simplify to the lender 

access to the Subsidiary assets in the even of default by the Parent group. Schematically, the downstream 

guarantee model is described by the following diagram. 

Exhibit 2.6 Structure of an upstream loan guarantee transaction 
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The problem is described by a three-state three-asset model, where the three states are (i) no default, (ii) 

default by the Parent, high recovery on defaulted loan, and (iii) default by both the Parent and low recovery 

on defaulted loan; and three assets are (i) risk-free loan, (ii) loan issued by the Subsidiary on a stand-alone 

basis, and (iii) loan issued by the Parent group. 

The model assumes that the recovery on a non-guaranteed loan is uncertain and can be either high or low 

while in the case of guaranteed loan the recovery is assumed to be always high. The approach models a 

higher certainty in the access of the lender to the assets of the Subsidiary and, therefore, lower uncertainty 

in the recovery on the defaulted loan. 

From the theoretical perspective, the upstream loan guarantee can be modelled as a sequence of binary 

models described by the following diagram. 

Exhibit 2.7 Tree modelling of an upstream loan guarantee 

 

In practice, upstream guaranteed typically involve multiple subsidiaries and effectively present cross-

guarantees between the Parent group subsidiaries some of which are borrowers, and some are guarantors 

in the loan transaction. The guarantee fee is allocated respectively from the net borrowers to net guarantors 

in the group. The model with two counterparties discussed in this guide is applied as an important building 

block of the cross guarantees model with multiple counterparties. The model of cross guarantees is 

discussed in more detail in the ‘Cooperative Games’ guide.   

2.8 Share purchase commitment 
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Section 3 Risk-Neutral Probabilities 
  

  

A risk-neutral measure (also called an equilibrium measure, or equivalent martingale measure) is a 

probability measure such that each financial instrument price is exactly equal to the discounted expectation 

of the instrument cash flows under this measure. Such a measure exists if and only if the market is arbitrage-

free. The risk-neutral measure is unique whenever the market is complete. 

Risk-neutral probabilities are closely related to Arrow-Debreu prices, which are the prices of basic financial 

instruments which pay $1 dollar in a specific state and zero in any other state of the underlying stochastic 

model of the financial market. The Arrow-Debreu price equals to the respective discounted risk-neutral 

probability of the state. 

Conceptually, the risk-neutral probabilities are derived as follows. The prices of the financial instruments 

traded in the market are used to derive Arrow-Debreu prices. The transformation from the prices of traded 

instruments into the Arrow-Debreu prices exists and unique whenever the markets are arbitrage=free and 

complete. The risk-neutral probabilities are estimated from the Arrow-Debreu prices directly as discussed 

above. The risk-neutral probabilities are applied then to derive the price of an arbitrary derivative 

instrument.9  

3.1 General model specifications 

In this section, the risk-neutral probabilities are derived for general model specifications. In the following 

sections the formulas are applied to derive prices of specific financial instruments. 

3.1.1 Multi-state model 

In this section, the risk-neutral distribution equations for the case of 𝑛 −state and 𝑛 −traded securities are 

derived. The general case is presented first to introduce notation and to describe the equations in general 

matrix form. Special cases of the general model are described in the following sections and applied to 

derivatives for specific financial instruments.  

The model is presented for two periods but is extended directly to arbitrary number of periods. Suppose 

that 𝑆 = (𝑆1, … , 𝑆𝑛) is the vector of asset prices and 𝑃 = 𝑃(𝑆) is an 𝑛 × 𝑛 matrix with the payoff structure of 

𝑛 assets, where 𝑃𝑖𝑗 is the payoff of security 𝑖 = 1,… , 𝑛 in state 𝑗 = 1,… , 𝑛. 

Suppose that 𝒜 = (𝒜1, … ,𝒜𝑛) represent a portfolio of 𝑛 Arrow-Debreu securities with the payoff matrix 

equal to identity matrix (denoted as 𝐼). The replication portfolio Λ for the Arrow-Debreu securities is 

estimated from the following linear equation 

(3.1)  Λ × 𝑃 = 𝐼 

or 

  

                                                      

9 The instrument is referred to as a derivative since its cash flows and respectively price are derived from other instruments which are 
traded and priced by the market. 



 

Konstantin Rybakov                                                   Derivative Pricing                                               Page 22 of 61  

∑Λ𝑘𝑖 × 𝑃𝑖𝑗
𝑖

= 𝐼𝑘𝑗 

where Λ𝑘𝑖 is the number of shares of asset 𝑖 acquired to replicate Arrow-Debreu security 𝑘. Assuming that 

the rank of matrix 𝑃 equals 𝑛, the replication portfolio is estimated from the following equation: 

(3.2)  Λ = 𝑃−1 

The Arrow-Debreu prices are described by equation 

(3.3)  𝐴 = 𝑃−1 × 𝑆 

and risk-neutral probabilities are described by equation 

(3.4)  𝑄 = 𝐴 × (1 + 𝑅) = 𝑃−1 × 𝑆 × (1 + 𝑅) 

Throughout the guide, unless specified explicitly, we assume the following interpretation of indices: 

1. Symbol 𝑖 refers to an underlying asset index 

2. Symbol 𝑗 refers to a state index 

3. Symbol 𝑘 refers to an Arrow-Debreu security index 

4. Symbol 𝑛 refers to the total number of underlying assets / states / Arrow-Debreu securities. 

 

3.1.2 Binary model 

Binary model is used as a basic building block for the discrete and continuous models. The binary model is 

described by two periods 𝑡 = 0,1 and two price states 𝑆𝑢, 𝑆𝑑.10 The initial price state is denoted as 𝑆, initial 

risk-free bond price is denoted as 𝐵, and risk-free rate of return is denoted as R. The stock dividend paid 

during the period is denoted as D. The two instruments are denoted respectively as 𝒮 and ℬ. In matrix form, 

the payoff function can be presented as follows 

(3.5)  P = (
𝑆𝑢 𝑆𝑑

𝐵(1 + 𝑅) 𝐵(1 + 𝑅)
) 

Suppose that 𝒜𝑢 = (1,0) and 𝒜𝑑 = (0,1) denote Arrow-Debreu assets. Suppose also that 𝒜𝑢 is replicated 

as 𝒜𝑢 = 𝛼𝑢𝒮 + 𝛽𝑢ℬ. In the matrix form the equation is presented as follows: 

{
𝛼𝑢(𝑆𝑢 + 𝐷𝑆) + 𝛽𝑢𝐵(1 + 𝑅) = 1

𝛼𝑢(𝑆𝑑 + 𝐷𝑆) + 𝛽𝑢𝐵(1 + 𝑅) = 0
 

The solution of the system of equations  for the replication portfolio is described as  

                                                      

10 For convenience, we use notation (𝑢, 𝑑) for states 𝑗 = 1,2, where state 𝑢 corresponds to upward movement and state 𝑑 corresponds 

to downward movement. 
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(3.6)  

{
 
 

 
 𝛼𝑢 =

1

(𝑆𝑢 − 𝑆𝑑)

𝛽𝑢 =
1

𝐵(1 + 𝑅)
×
−(𝑆𝑑 + 𝐷𝑆)

(𝑆𝑢 − 𝑆𝑑)

 

Similarly, 

(3.7)  

{
 

 𝛼𝑑 =
−1

(𝑆𝑢 − 𝑆𝑑)

𝛽𝑑 =
1

𝐵(1 + 𝑅)
×
𝑆𝑢 + 𝐷𝑆

(𝑆𝑢 − 𝑆𝑑)

 

In matrix form the replication portfolio is presented as follows: 

(3.8)  Λ = (
𝛼𝑢 𝛽𝑢

𝛼𝑑 𝛽𝑑
) =

1

(𝑆𝑢 − 𝑆𝑑)
×

(

 
 1

−(𝑆𝑑 + 𝐷𝑆)

𝐵(1 + 𝑅)

−1
𝑆𝑢 + 𝐷𝑆

𝐵(1 + 𝑅) )

 
 

 

The Arrow-Debreu prices, denoted as 𝐴𝑢 and 𝐴𝑑, are calculated as 

(3.9)  

{
 
 

 
 𝐴𝑢 = 𝛼𝑢𝑆 + 𝛽𝑢𝐵 =

𝑆(1 + 𝑅 − 𝐷) − 𝑆𝑑

(𝑆𝑢 − 𝑆𝑑)(1 + 𝑅)

𝐴𝑑 = 𝛼𝑑𝑆 + 𝛽𝑑𝐵 =
−𝑆(1 + 𝑅 − 𝐷) + 𝑆𝑢

(𝑆𝑢 − 𝑆𝑑)(1 + 𝑅)

 

or in the vector notation 

(3.10)  A =
1

(𝑆𝑢 − 𝑆𝑑)(1 + 𝑅)
× (

𝑆(1 + 𝑅 − 𝐷) − 𝑆𝑑

−𝑆(1 + 𝑅 − 𝐷) + 𝑆𝑢
) 

The Arrow-Debreu prices have the following property: 𝐴𝑢 + 𝐴𝑑 =
1

1+𝑅
.11 Therefore, the normalized Arrow-

Debreu prices can be interpreted as risk-neutral probabilities (denoted respectively as 𝑞𝑢 and 𝑞𝑑): 

(3.11)  

{
 
 

 
 𝑞𝑢 = 𝐴𝑢(1 + 𝑅) =

𝑆(1 + 𝑅 − 𝐷) − 𝑆𝑑

(𝑆𝑢 − 𝑆𝑑)

𝑞𝑑 = 𝐴𝑑(1 + 𝑅) =
−𝑆(1 + 𝑅 − 𝐷) + 𝑆𝑢

(𝑆𝑢 − 𝑆𝑑)

 

or in vector notation 

                                                      

11 The property follows directly from the fact that 𝑞𝑢𝐵(1 + 𝑅) + 𝑞𝑑𝐵(1 + 𝑅) = 𝐵 (risk-neutral price of the risk-free bond equals the 
actual price of the risk-free bond). 
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(3.12)  Q =
1

(𝑆𝑢 − 𝑆𝑑)
× (

𝑆(1 + 𝑅 − 𝐷) − 𝑆𝑑

−𝑆(1 + 𝑅 − 𝐷) + 𝑆𝑢
) 

The probabilities 𝑞𝑢 and 𝑞𝑑 are called risk-neural due to the following property: the expected risk-neutral 

price of the underlying asset equals to 

(3.13)  𝐹 = 𝐸𝑄[𝑆] = 𝑞𝑢𝑆𝑢 + 𝑞𝑑𝑆𝑑 = 𝑆(1 + 𝑅 − 𝐷) = 𝑆(1 + 𝑅) − 𝐷𝐹 

 where 𝐷𝐹 = 𝑆𝐷 is fixed dividend paid in period 𝑡. 

The price 𝐹 is also interpreted as the forward price of the asset. 

The process risk-neutral standard deviation is calculated using the following equation:12 

(3.14)  𝜎2,𝑄[𝑆] = 𝑞𝑢𝑆2,𝑢 + 𝑞𝑑𝑆2,𝑑 − (𝑞𝑢𝑆𝑢 + 𝑞𝑑𝑆𝑑) = (𝑆𝑢 − 𝑆𝑑)𝑞𝑢𝑞𝑑 

 

3.1.3 Sequence of binary models 

In this section, we derive the equations for 𝑛 −state (with the focus on 3 −state) model which can be 

reduced to a sequence of binary models. The reduction of 𝑛 −state model to sequence of binary models 

can be performed when the payoffs of 𝑛 assets have the following property. 

Sequential payoff structure property. We say that the assets have a sequential payoff structure, if the payoff 

matrix of 𝑛 assets has the following property. 

(3.15)  For each 𝑖 = 1,… , 𝑛, asset 𝐴𝑖 is an instrument with constant payoff in states 𝑗 = 𝑖, … , 𝑛 

Asset 𝐴1 is the risk-free asset which has a constant payoff in each state 𝑗 = 1,… , 𝑛. 

For consistency with the notation in Section 3.1.2, the states 𝑗 = 1,2,3 are also denoted as 𝑗 = 𝑢, 𝑑𝑢, 𝑑𝑑, 

where 𝑢 is up state, 𝑑𝑢 is down state followed by up state and 𝑑𝑑 is down state followed by down state. 

The model has the following applications: 

1. Convertible bond. Three assets are represented by risk-free bond, risky bond, and stock, where 

the risky bond and stock are issued by the company. Three states are represented by default state 

(𝑗 = 1), non-default state with stock moving up (𝑗 = 2), and non-default state with stock moving 

down (𝑗 = 3). The payoff of the risky bond is assumed to be constant in non-default state. 

2. Downstream loan guarantee. Three assets are represented by risk-free bond, bond issued by the 

parent entity, and bond issued by subsidiary entity. Three states are represented by non-default 

state (𝑗 = 1), default state by subsidiary only (𝑗 = 2), and default state by both parent and subsidiary 

(𝑗 = 3). The payoff of the bond issued by the parent is assumed to be constant if parent did not 

default. The payoff on the bond issued by subsidiary may be different depending on whether only 

subsidiary entity or both the parent and subsidiary entities have defaulted. 

                                                      

12 The equation also applies to actual standard deviation by replacing the risk-neutral probabilities 𝑞𝑢 and 𝑞𝑑 with actual probabilities. 
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3. Upstream loan guarantee. Three assets are represented by risk-free bond, non-guaranteed bond 

issued by the group, and guaranteed bond issued by the group. Three states are represented by 

non-default state (𝑗 = 1), default and high recovery on defaulted loan (𝑗 = 2), and default and low 

recovery on defaulted loan (𝑗 = 3). The payoff of the guaranteed loan is assumed to be constant in 

both low and high recovery states of defaulted loan. The payoff on non-guaranteed loan is different 

in the low and high recovery states of defaulted loan.  

The reduction to a sequence of binary model is illustrated below for the 3-security and 3-state example with 

the securities denoted as 𝐵 (risk-free security), 𝑆1 (security with constant payoffs in states 𝑗 = 2,3), and 𝑆2 

(security with a different payoff in each state). The argument tis easily extended to the 𝑛 −state model. The 

application of the model to convertible bond and intercompany financial guarantee valuation is discussed 

in Sections 4.4.3 and 4.3.3. 

The replication of Arrow-Debreu securities is performed in two steps: 

1. In step 1, securities with the following payoffs structure are replicated using assets 𝑖 = 1,2 

(
1 0
0 1
0 1

) 

where the first security is Arrow-Debreu security𝒜1  and the second security is denoted as 𝒜2,3. 

Note that replicated payoff in state 𝑗 = 3 will be exactly the same as payoff in state 𝑗 = 3 due to 

property (3.15). Therefore, it is sufficient to replicate the payoff structure in states 𝑗 = 1,2 using the 

two assets 𝑖 = 1,2. 

2. In step 2, securities with the following payoff structure are replicated using asset 𝒜2,3 and asset 

𝑖 = 3: 

(
𝑥 𝑦
1 0
0 1

) 

where 𝑥 and 𝑦 are some arbitrary numbers. The securities are denoted respectively as 𝒜̃1 and 𝒜̃2. 

The numbers are converted to zero by adding respective shares of Arrow-Debreu security 𝒜1 

constructed in step 1. Security 𝒜2,3 is viewed as a risk-free security at the stage two of the binary 

model estimation process. 

In matrix form, the estimation process can be described as follows. Suppose that 

Λ1 = (
𝛼1,𝑢 𝛽1,𝑢

𝛼1,𝑑 𝛽1,𝑑
) and Λ2 = (

𝛼2,𝑢 𝛽2,𝑢

𝛼2,𝑑 𝛽2,𝑑
) 

are the 2x2 matrix estimated at stages one and two. In a 3x3 matrix representation the step 1 and 2 

equations are represented as follows   

(
𝒜1

𝒜2,3

𝑆2
) = (

𝛼1,𝑢 𝛽1,𝑢 0

𝛼1,𝑑 𝛽1,𝑑 0
0 0 1

) × (
𝐵
𝑆1

𝑆2
) 

and 

(
𝒜1

𝒜2

𝒜3

) = (

1 0 0
−𝑥 𝛼2,𝑢 𝛽2,𝑢

−𝑦 𝛼2,𝑑 𝛽2,𝑑
) × (

𝒜1

𝒜2,3

𝑆2
) 
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Combining the two equations, the equation for the Arrow-Debreu Securities can be represented as follows: 

(
𝒜1

𝒜2

𝒜3

) = (

1 0 0
−𝑥 𝛼2,𝑢 𝛽2,𝑢

−𝑦 𝛼2,𝑑 𝛽2,𝑑
) × (

𝛼1,𝑢 𝛽1,𝑢 0

𝛼1,𝑑 𝛽1,𝑑 0
0 0 1

) × (
𝐵
𝑆1

𝑆2
) 

where parameters 𝑥 and 𝑦 are selected so that the first element of the 𝒜2 and 𝒜3 vectors is equal to zero. 

The equation can be simplified as follows: 

(
𝒜1

𝒜2

𝒜3

) = (

𝛼1,𝑢 𝛽1,𝑢 0

−𝑥𝛼1,𝑢 + 𝛼2,𝑢𝛼1,𝑑 −𝑥𝛽1,𝑢 + 𝛼2,𝑢𝛽1,𝑑 𝛽2,𝑢

−𝑦𝛼1,𝑢 + 𝛼2,𝑑𝛼1,𝑑 −𝑦𝛽1,𝑢 + 𝛼2,𝑑𝛽1,𝑑 𝛽2,𝑑
) × (

𝐵
𝑆1

𝑆2
) 

 

3.1.4 Discrete model 

To show that the risk-neutral probabilities can be interpreted as probabilities not only in the binary but also 

in the generic discrete case, the following Markov property of the Arrow-Debreu prices must be proved. 

Suppose that 𝐴𝑡,𝑡+1 and 𝐴𝑡+1,𝑡+2 denote the matrices of Arrow-Debreu prices for periods [𝑡, 𝑡 + 1] and 

[𝑡 + 1, 𝑡 + 2] (where 𝐴𝑡,𝑠
𝑖,𝑗

 is the price of the Arrow-Debreu security which pays $1 in state 𝑗 in period 𝑠 and 

zero otherwise conditional that in current period 𝑡 the state is 𝑖). Then  

𝐴𝑡,𝑡+2 = 𝐴𝑡,𝑡+1 × 𝐴𝑡+1,𝑡+2 

The Markov property is illustrated by the following example. Suppose that there are three periods in the 

binomial model and the states in period 𝑡 = 2 are 𝑆𝑢𝑢, 𝑆𝑢𝑑, 𝑆𝑑𝑢, and 𝑆𝑑𝑑. To replicate the payoff of the 𝐴𝑢𝑢 

Arrow-Debreu security, investor applies the following strategy. If the price goes up in period 𝑡 = 1, then 

investor purchases a replicating portfolio described in the previous section. If the price goes down, the 

investor gets zero payout and does nothing. The price of the replicating portfolio in state 𝑆𝑢 is 𝐴𝑡+1
𝑢,𝑢

. To 

generate the value in period 𝑡 + 1 in state 𝑆𝑢, investor must purchase 𝐴𝑡+1
𝑢,𝑢

 shares of the 𝒜𝑢 security in 

period 𝑡 = 0. The price of the 𝐴𝑡=1
𝑢,𝑢

 shares is 𝐴𝑡=0
𝑢 . Therefore, the value of the 𝒜𝑢𝑢 security is 𝐴𝑡=2

𝑢𝑢 = 𝐴𝑡=0
𝑢 ×

𝐴𝑡=1
𝑢,𝑢

. The argument can be directly extended to prove the Markov property in general form. 

Note that if the discrete process is modelled using a binary tree, then in general case the number of states 

in year 𝑇 is 𝑛 = 2
𝑇

𝑑𝑡, where 𝑑𝑡 is the length of one period (in years). The Markov property allows to mitigate 

the problem of exponentially growing number of states as follows: 

► The risk-neutral distribution in period 𝑡 = 1 (denoted as 𝑄1) is approximated using the binomial tree 

model and the equations derived above. A tree step can be selected for example as 𝑑𝑡 = 0.1 so 

that 𝑛 = 210 number of states in period 𝑡 = 1 is sufficiently large to produce a good approximation 

of the risk-neutral probabilities but sufficiently small from the computational perspective; 

► The risk-neutral distributions in periods 𝑡 = 2,… , 𝑇 are calculated using the distribution 𝑄1 and the 

Markov property of the risk-neutral probabilities. 

In the following sections, the risk-neutral probabilities are derived for different types of continuous processes 

(as a limit case of the binomial model with the tree step 𝑑𝑡 → 0. 
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3.2 Black-Scholes model 

A geometric Brownian motion model is applied to valuate stock price or commodity price options. A detailed 

discussion of the Bloomberg OV tool for the commodity option valuation is presented in Error! Reference 

source not found.. The risk-neutral probabilities are derived for a more general geometric Brownian motion 

model with mean reversion. The section shows that the risk-neutral probabilities do not depend on either 

drift or mean-reversion parameters 𝜇 and 𝜌. 

3.2.1 Binomial approximation 

The geometric Brownian motion is described by the following stochastic differential equation 

(3.16)  𝑆𝑡+𝑑𝑡 = (𝑆𝑡)
1−𝜌𝑑𝑡 × 𝑒𝜇𝑑𝑡+𝜎√𝑑𝑡𝜀𝑡 

where 𝜀𝑡~𝑁(0,1) or in logarithm form 

(3.17)  ∆ ln 𝑆𝑡+𝑑𝑡 = (𝜇 − 𝜌 ln 𝑆𝑡)𝑑𝑡 + 𝜎√𝑑𝑡𝜀𝑡 

In each period, the process can be approximated by the following binary model: 

(3.18)  {
𝑆𝑢 = 𝑆1−𝜌𝑑𝑡 × 𝑒𝜇𝑑𝑡+𝜎√𝑑𝑡 𝑝𝑢 =

1

2

𝑆𝑑 = 𝑆1−𝜌𝑑𝑡 × 𝑒𝜇𝑑𝑡−𝜎√𝑑𝑡 𝑝𝑑 =
1

2

 

The equations can be approximated as follows: 

(3.19)  

{
 
 

 
 𝑆𝑢 = 𝑆1−𝜌𝑑𝑡 × [1 + (𝜇 +

𝜎2

2
) 𝑑𝑡 + 𝜎√𝑑𝑡] 𝑝𝑢 =

1

2

𝑆𝑑 = 𝑆1−𝜌𝑑𝑡 × [1 + (𝜇 +
𝜎2

2
) 𝑑𝑡 − 𝜎√𝑑𝑡] 𝑝𝑑 =

1

2

 

3.2.2 Continuous dividends 

In the approximation, we assume that 𝑅 = 𝑟 × 𝑑𝑡 and 𝐷 = 𝑑 × 𝑑𝑡. The binary risk-neutral probabilities for 

the process are calculated using the following equations:13 

                                                      

13 Specifically, 𝑆𝑢 − 𝑆𝑑 = S × (2𝜎√𝑑𝑡) and 𝑞𝑢 =
𝑆(1+(𝑟−𝑑)𝑑𝑡)−𝑆𝑑

(𝑆𝑢−𝑆𝑑)
=

1

2
+

𝑟−𝑑−𝜇−
𝜎2

2

𝜎
× √𝑑𝑡. 
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(3.20)  

{
 
 

 
 
𝑞𝑢 =

1

2
+
𝑟 − 𝑑 − 𝜇 −

𝜎2

2
+ 𝜌 ln 𝑆𝑡

2𝜎
× √𝑑𝑡

𝑞𝑑 =
1

2
−
𝑟 − 𝑑 − 𝜇 −

𝜎2

2
+ 𝜌 ln 𝑆𝑡

2𝜎
× √𝑑𝑡

 

The process has the following risk-neutral mean and variance parameters:14 

(3.21)  {
𝐸𝑄[𝑆] = 𝑆 × [1 + (𝑟 − 𝑑)𝑑𝑡]

𝜎2,𝑄[𝑆] = 𝑆2 × 𝜎2 × 𝑑𝑡
 

The equations illustrate the Girsanov theorem: if the stock price process described by the geometric 

Brownian motion with parameters (𝜇, 𝜎), then the risk-neutral probabilities derived for the process are 

described by the geometric Brownian motion with parameters (𝑟 − 𝑑 −
𝜎2

2
, 𝜎 ). Note that the risk-neutral 

probabilities do not depend on the parameter μ. The risk-neutral probabilities are generated by replacing 

parameter μ with the following parameter: 

(3.22)  𝜇 → 𝑟 − 𝑑 −
𝜎2

2
 

 

3.3 Black-Scholes model with mean-reversion 

A standard geometric Brownian motion model is applied to valuate stock price or commodity price options. 

A detailed discussion of the Bloomberg OV tool for the commodity option valuation is presented in Error! 

Reference source not found.. 

3.3.1 Binomial approximation 

The geometric Brownian motion is described by the following stochastic differential equation 

(3.23)  𝑆𝑡+𝑑𝑡 = (𝑆𝑡)
1−𝜌𝑑𝑡 × 𝑒𝜇𝑑𝑡+𝜎√𝑑𝑡𝜀𝑡 

where 𝜀𝑡~𝑁(0,1) or in logarithm form 

(3.24)  ∆ ln 𝑆𝑡+𝑑𝑡 = (𝜇 − 𝜌 ln 𝑆𝑡)𝑑𝑡 + 𝜎√𝑑𝑡𝜀𝑡 

In each period, the process can be approximated by the following binary model: 

                                                      

14 The risk-neutral variance equals the actual variance of the stock price process 𝜎2,𝑄[𝑆] = (𝑆22𝜎2) ×
1

2
= 𝑆2 × 𝜎2 × 𝑑𝑡. The equation 

is derived formally in Appendix B.1. 
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(3.25)  {
𝑆𝑢 = 𝑆1−𝜌𝑑𝑡 × 𝑒𝜇𝑑𝑡+𝜎√𝑑𝑡 𝑝𝑢 =

1

2

𝑆𝑑 = 𝑆1−𝜌𝑑𝑡 × 𝑒𝜇𝑑𝑡−𝜎√𝑑𝑡 𝑝𝑑 =
1

2

 

The equations can be approximated as follows: 

(3.26)  

{
 
 

 
 𝑆𝑢 = 𝑆1−𝜌𝑑𝑡 × [1 + (𝜇 +

𝜎2

2
) 𝑑𝑡 + 𝜎√𝑑𝑡] 𝑝𝑢 =

1

2

𝑆𝑑 = 𝑆1−𝜌𝑑𝑡 × [1 + (𝜇 +
𝜎2

2
) 𝑑𝑡 − 𝜎√𝑑𝑡] 𝑝𝑑 =

1

2

 

3.3.2 Continuous dividends 

In the approximation, we assume that 𝑅 = 𝑟 × 𝑑𝑡 and 𝐷 = 𝑑 × 𝑑𝑡. The binary risk-neutral probabilities for 

the process are calculated using the following equations:15 

(3.27)  

{
 
 

 
 
𝑞𝑢 =

1

2
+
𝑟 − 𝑑 − 𝜇 −

𝜎2

2
𝜎

× √𝑑𝑡

𝑞𝑑 =
1

2
−
𝑟 − 𝑑 − 𝜇 −

𝜎2

2
𝜎

× √𝑑𝑡

 

The process has the following risk-neutral mean and variance parameters:16 

(3.28)  {
𝐸𝑄[𝑆] = 𝑆 × [1 + (𝑟 − 𝑑)𝑑𝑡]

𝜎2,𝑄[𝑆] = 𝑆2 × 𝜎2 × 𝑑𝑡
 

The equations illustrate the Girsanov theorem: if the stock price process described by the geometric 

Brownian motion with parameters (𝜇, 𝜎), then the risk-neutral probabilities derived for the process are 

described by the geometric Brownian motion with parameters (𝑟 − 𝑑 −
𝜎2

2
, 𝜎 ). Note that the risk-neutral 

probabilities do not depend on the parameter μ. The risk-neutral probabilities are generated by replacing 

parameter μ with the following parameter: 

(3.29)  𝜇 → 𝑟 − 𝑑 −
𝜎2

2
 

 

                                                      

15 Specifically, 𝑆𝑢 − 𝑆𝑑 = S1−𝜌𝑑𝑡 × (2𝜎√𝑑𝑡) and 𝑞𝑢 =
𝑆(1+(𝑟−𝑑)𝑑𝑡)−𝑆𝑑

(𝑆𝑢−𝑆𝑑)
=

1

2
+

𝑟−𝑑−𝜇−
𝜎2

2

𝜎
× √𝑑𝑡. 

16 The risk-neutral variance equals the actual variance of the stock price process 𝜎2,𝑄[𝑆] =. 
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3.4 CDS model 

The credit default swap (CDS) valuation is an example of a binary continuous model with an absorbing 

state which corresponds to the default on the reference instrument. The absorbing state corresponds to the 

loan default state. A more detailed discussion of the CDS valuation is provided in the ‘Financial Guarantees’ 

guide. 

The model assumes deterministic movement in the underlying asset price with probability close to one and 

a small probability γdt of jumping into the absorbing state X. After moving into state X, the process stays in 

the state X with probability one. 

An example of the model is the price of a bond which is valued at par (St=100) but with probability γdt the 

bond may default in each period. Default is assumed to be the absorbing state and the value X of the bond 

in the state is interpreted as the bond recovery value. The model is described using F(S)=0.  

The model is described by the following stochastic differential equation: 

(3.30)  {
𝑑𝑆𝑡 = 𝐹(𝑆𝑡) × 𝑑𝑡 𝑝 = 1 − 𝛾𝑑𝑡
𝑆𝑡+𝑑𝑡 = 𝑋 𝑝 = 𝛾𝑑𝑡

 

The model is described by a binomial process, which is equivalently described as follow: 

(3.31)  {
𝑆𝑢 = 𝑆 + 𝐹(𝑆) × 𝑑𝑡 𝑝 = 1 − 𝛾𝑑𝑡

𝑆𝑑 = 𝑋 𝑝 = 𝛾𝑑𝑡
 

The risk-neutral probabilities for the process are calculated using the following equations:17 

(3.32)  

{
 
 

 
 𝑞𝑢 = 1 − (

𝐹(𝑆)

𝑆 − 𝑋
+

𝑆

𝑆 − 𝑋
(𝑑 − 𝑟)) × 𝑑𝑡

𝑞𝑑 = (
𝐹(𝑆)

𝑆 − 𝑋
+

𝑆

𝑆 − 𝑋
(𝑑 − 𝑟)) × 𝑑𝑡

 

The process has the following risk-neutral mean and variance parameters: 

(3.33)  {

𝐸𝑄[𝑆] = 𝑆 × [1 + (𝑟 − 𝑑)𝑑𝑡]

𝜎2,𝑄[𝑆] = 𝑆(𝑆 − 𝑋) × [
𝐹(𝑆)

𝑆
+ 𝑑 − 𝑟] × 𝑑𝑡

 

The parameters of the risk-neutral probabilities do not depend on default hazard rate parameter γ. The risk-

neutral probabilities are generated by replacing parameter γ with the following parameter: 

                                                      

17 Specifically, 𝑆𝑢 − 𝑆𝑑 = 𝑆 − 𝑋 + 𝐹(𝑆)𝑑𝑡 and 𝑞𝑢 =
𝑆(1+(𝑟−𝑑)𝑑𝑡)−𝑆𝑑

(𝑆𝑢−𝑆𝑑)
=

𝑆−𝑋+𝑆(𝑟−𝑑)𝑑𝑡

𝑆−𝑋+𝐹(𝑆)𝑑𝑡
= 1 − (

𝐹(𝑆)

𝑆−𝑋
+

𝑆

𝑆−𝑋
(𝑑 − 𝑟)) × 𝑑𝑡. 
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(3.34)  𝛾 →
𝑆

𝑆 − 𝑋
× [
𝐹(𝑆)

𝑆
+ 𝑑 − 𝑟] 

A special case of the formula in the case of non-amortizable bond is presented in equation (3.35) of Section 

3.5.4. 

3.5 Bond valuation models 

 

3.5.1 Model of bond prices 

The Vasicek model is specified using the following stochastic model of interest rates: 

𝑑𝑟𝑡 = (𝜗 − 𝑎𝑟𝑡) × 𝑑𝑡 + 𝜎 × 𝑑𝑊𝑡 = 𝜗 × 𝑑𝑡 + 𝜎 × 𝑑𝑊𝑡    (𝑎𝑠 𝑎 → 0) 

For simplicity of presentation, the analysis in this guide is limited to the case 𝑎 = 0. Zero coupon prices are 

described by the following equation: 

𝑃𝑡,𝑇 = 𝐴𝑡,𝑇 × 𝑒
−𝐵𝑡,𝑇×𝑟 

where 

𝐵𝑡,𝑇 = 𝑇− 𝑡 

and 

𝐴𝑡,𝑇 = 𝑒
−[𝜗

(𝑇−𝑡)2

2
−
𝜎2(𝑇−𝑡)3

6
]
 

The stochastic model of the bond price is described by the following equation:18 

𝑑𝑃 =
𝜕𝑃

𝜕𝑡
× 𝑑𝑡 +

𝜕𝑃

𝜕𝑟
𝑑𝑟 +

1

2
×
𝜕2𝑃

𝜕𝑟2
× 𝜎2 × 𝑑𝑡

= (
𝐴′

𝐴
− 𝐵′𝑟) × 𝑃 × 𝑑𝑡 − 𝐵 × 𝑃 × [𝜗 × 𝑑𝑡 + 𝜎 × 𝑑𝑊𝑡] +

1

2
× 𝐵2 × 𝜎2 × 𝑃 × 𝑑𝑡 

or, equivalently, 

𝑑𝑃 = [𝜗 × (𝑇 − 𝑡) −
𝜎2(𝑇 − 𝑡)2

2
+ 𝑟 − 𝜗(𝑇 − 𝑡) +

1

2
× (𝑇 − 𝑡)2 × 𝜎2] × 𝑃 × 𝑑𝑡 − 𝐵 × 𝜎 × 𝑃 × 𝑑𝑊

= 𝑟 × 𝑃 × 𝑑𝑡 − 𝐵 × 𝜎 × 𝑃 × 𝑑𝑊 

The stochastic equation for the bond price is simplified as follows: 

{
𝑑 ln 𝑃 = 𝑟 × 𝑑𝑡 − 𝜎(𝑇 − 𝑡) × 𝑑𝑊
𝑑𝑟 = 𝜗 × 𝑑𝑡 + 𝜎 × 𝑑𝑊𝑡

 

                                                      

18 Specifically, 𝐵′ = −1 and 
𝐴′

𝐴
= 𝜗 × (𝑇 − 𝑡) −

𝜎2(𝑇−𝑡)2

2
. 
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The stochastic equation is modelled as a two-dimensional system in which the variables 𝑃 and 𝑟 are linked 

as follows: 

ln 𝑃𝑡,𝑇 = −[𝜗
(𝑇 − 𝑡)2

2
−
𝜎2(𝑇 − 𝑡)3

6
] − (𝑇 − 𝑡) × 𝑟𝑡 

The stochastic changes in the market interest rates and bond prices are calculated simultaneously. 

3.5.2 Risk-neutral prices 

 

3.5.3 Black model 

The Black model is illustrated for the case of Vasicek model of interest rates. The risk-neutral probabilities 

are derived in two steps. First, the model of bond price (underlying asset) diffusion process is derived. Next, 

the binomial approximation to the bond price and respective risk-neutral probabilities are derived.  

The risk-neutral probabilities are described by the following equations: 

{
  
 

  
 
𝑆𝑢 = 𝑆 × [1 + (𝑟 +

𝜎2(𝑇 − 𝑡)2

2
) 𝑑𝑡 + 𝜎(𝑇 − 𝑡)√

𝑑𝑡

2
] 𝑝𝑢 =

1

2

𝑆𝑑 = 𝑆 × [1 + (𝑟 +
𝜎2(𝑇 − 𝑡)2

2
) 𝑑𝑡 − 𝜎(𝑇 − 𝑡)√

𝑑𝑡

2
] 𝑝𝑑 =

1

2

 

and 

{
 
 

 
 
𝑞𝑢 =

1

2
−
𝜎(𝑇 − 𝑡)

2
× √

𝑑𝑡

2

𝑞𝑑 =
1

2
+
𝜎(𝑇 − 𝑡)

2
× √

𝑑𝑡

2

 

  

3.5.4 Bond CDS model 

Suppose that the binary process models the bond price with 𝑆 = 100 and 𝐹(𝑆) = −𝜆𝑆0 (straight line loan 

amortization over the loan maturity period. If 𝜆 = 0, then the bond is priced at par in each period). In the 

event of bond default, the bond residual value equals 𝑋 = 𝛼𝑆, where 𝛼 is the bond recovery rate at default. 

The model dividend payment equals to the bond principal amortization and interest expense amounts. 

Dividend payout in each period equals 𝐷𝑓𝑖𝑥𝑒𝑑 = 𝜆𝑆0 × 𝑑𝑡 + 𝑖 × 𝑆 × 𝑑𝑡. Therefore, 𝑑 =
𝐷𝑓𝑖𝑥𝑒𝑑

𝑆×𝑑𝑡
=

𝜆𝑆0

𝑆
+ 𝑖). After 

we substitute the equations into the equation (3.34), the expression for the risk-neutral default hazard 

rate is described by the following equation: 
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(3.35)  𝛾 →
𝑖 − 𝑟

1 − 𝛼
 

The actual default hazard rate 𝛾 equals the risk-neutral default hazard rate whenever 

(3.36)  𝑖 = 𝑟 + 𝛾 × (1 − 𝛼) = 𝑟 + 𝜋 

where 𝜋 = 𝛾 × (1 − 𝛼) is interpreted as recovery-adjusted risk premium. 

 

3.6 Lease residual value risk model 

Lease residual risk valuation is modelled in this guide either as (i) a Black-Scholes model or (ii) a CDS 

model. Under the Black-Scholes modelling approach, the residual value of the lease underlying asset is 

assumed to change continuously and depend on the market, technological or regulatory risks. Under the 

CDS modelling approach, the residual value is modelled as a binary process where the ‘default’ state 

corresponds to destruction of the underlying asset value. 

Leasing business involves operational costs which must be taken into consideration in the lease derivative 

pricing. Specifically, the dividends parameter in the Black-Scholes or CDS model is estimated as the lease 

fee revenues adjusted by the operating costs: 

(3.37)  𝐷 = 𝐹 ×𝑚𝑜𝑝 

where 𝐹 is the lease fee and 𝑚𝑜𝑝 is the operating margin of the lessor. We refer to the parameter 𝐷 in the 

lease residual value risk model as a dividend payment (to show the relation to a CDS / Black-Scholes 

model) or cost-adjusted lease fee payment. 

Most lease contracts specify monthly lease fee payment frequency. Therefore, for consistency we assume 

that  

𝑑𝑡 =
1

12
 

throughout these notes whenever we discuss the lease residual valuation models. 

3.6.1 Black-Scholes approach 

Under the Black-Scholes approach, the residual value is modelled using geometric Brownian motion, which 

is described by equation (3.16). The risk-neutral probabilities are described by the same equation with 

parameter 𝜇 replaced with 

(3.38)  𝜇 → 𝑟 − 𝑑 −
𝜎2

2
 

where the dividend rate is calculated using equation (4.7). The dividend rate includes the market 

depreciation of the asset and the interest component: 
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(3.39)  𝑑 = 𝜆 + 𝑖 

 Therefore, the above equation can be equivalently represented as follows: 

(3.40)  𝜇 →= −(𝜆 + (𝑖 − 𝑟) +
𝜎2

2
) 

The residual value of the asset under the risk-neutral probabilities is described by the following stochastic 

equation: 

(3.41)  ln 𝑆𝑡 = ln 𝑆0 − (𝜆 + (𝑖 − 𝑟) +
𝜎2

2
) 𝑡 + 𝜎𝜀𝑡 

Parameter 

(3.42)  𝜆̃ = 𝜆 + (𝑖 − 𝑟) +
𝜎2

2
 

is interpreted as the (negative) slope of the implied premium schedule, which includes the following 

components: (i) compensation for asset depreciation (estimated based on market depreciation schedule); 

(ii) risk premium component of the lease interest rate (estimated as the lease interest rate and risk-free 

interest rate); and (iii) residual value volatility parameter 𝜎. 

Note that the implied depreciation schedule is derived from the lease fees and risk-free rates and does not 

depend on the actual depreciation schedule estimated using historical data. Equation (3.42), which 

compares the implied and actual depreciation schedule slopes, is presented in this format for convenience 

to break down the impact of the expected actual depreciation (𝜆) and risk premium (𝜋 = (𝑖 − 𝑟) +
𝜎2

2
) 

components on the option price.  

3.6.2 CDS approach 

In this section, we show that under the CDS approach the lease instrument can be interpreted as an 

amortized loan. The lease residual value is priced similar to a CDS price of the amortized loan. Note that 

the risk-neutral hazard rate for a generic CDS model is described by the equation (3.34). 

(3.43)  𝛾 →
𝑆

𝑆 − 𝑋
× [
𝐹(𝑆)

𝑆
+ 𝑑 − 𝑟] 

We consider two alternative residual value model specifications. 

 Continuous pricing 

“Continuous pricing” model is presented for modelling purposes. In practice, a lease fair market value (FMV) 

is observed only in a single period when the lease is issued. The equations presented in this section are 

applied to derive the valuation process in the “single-price” model.  
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Under the “continuous pricing” model, we assume that the market lease fee is re-values in each period and 

is quoted as a sum of the expected depreciation and lease interest rate. The lease interest rate is calculated 

as a fixed percentage of the lease residual market value: 

𝑑 × 𝑆 × 𝑑𝑡 = −𝐹(𝑆)𝑑𝑡 + 𝑖 × 𝑆 × 𝑑𝑡 

The implied default hazard rate is calculated consistently with equation (3.35) as 

(3.44)  𝛾 =

𝐹(𝑆)
𝑆

+ 𝑑 − 𝑟

1 − 𝛼
=
𝑖 − 𝑟

1 − 𝛼
 

Under the “continuous pricing” CDS approach, the lease residual risk model is interpreted as the amortized 

bond CDS model. Specifically, (i) lease depreciation schedule corresponds to the bond amortization 

schedule; (ii) lease interest rate (𝑖) corresponds to the bond interest rate; and (iii) lease value recovery rate 

in the event of default (𝛼) corresponds to the bond value recovery rate. 

 Single issue date pricing 

 

 Counter-party risk 

Note that under the CDS valuation approach, the return on the lease contracts (adjusted for residual value 

risk and operational costs) is equal to the risk-free rate. Suppose that the derivative contracts are issued 

by two affiliated entities within the same corporate group. The approach described in the sections above 

does not take into account the risk of default by the entity which performs the functions of insurer in the 

group.19 

To account for the counter-party default risk, the risk-free rate of return is replaced with the rate of return 

applicable to the insurer. The group rate of return can be used as a proxy to replace the risk-free rate. 

𝑟 → 𝑖𝑔𝑟𝑜𝑢𝑝 

And the implied hazard rate is estimated as  

𝛾 =
𝑖 − 𝑖𝑔𝑟𝑜𝑢𝑝

1 − 𝛼
 

3.6.3 Insurance models of residual risk 

The equations derived above are arbitrage-free prices, which incorporate both the expected costs and profit 

components. Specifically, under the Black-Scholes modelling approach, the expected costs are 

compensated through the expected depreciation compensation component of the implied premium 

schedule and the profit component is priced through the differential between the lease interest rate and 

risk-free rate (𝑖 − 𝑟 component) and through the residual value volatility component (
𝜎2

2
).  

                                                      

19 The minimum rate at which the group can raise capital in the markets is the refinancing rate of return. Therefore, the group 
refinancing rate of return must be retained by the insured entity. 
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Under the CDS modelling approach, the lease residual value risk model is interpreted as a CDS model of 

an amortized bond asset. The arbitrage-free price is derived based on the implied default hazard rate of 

the underlying bond asset. 

Under the insurance approach, the implied parameters in the price equations (estimated based on market 

prices) are replaced with the parameters based on historical data. The insurance approach effectively 

applies the same equations to price the derivatives but uses a different approach for equation parameters 

estimation. Implementation of the insurance approach for the continuous (Black-Scholes) and binary (CDS) 

models is described as follows: 

Continuous model 

 

Binary (default / non-default) model 

 

3.7 Loan guarantee models 

This section derived risk-neutral probabilities for the downstream and upstream loan guarantee models. 

3.7.1 Downstream loan guarantee 

 

3.7.2 Upstream loan guarantee 

 

3.8 Hierarchical structures 

The models discussed in this section are three-asset models including a risk-free asset and two risky 

assets. The price movement of the risky assets can be represented by an hierarchical tree structure: (i) 

first, a binomial tree models the movement in the ‘parent’ asset; (ii) then, conditional on the movement of 

the ‘parent’ asset price, a binomial movement in the ‘child’ asset is modelled.  

3.8.1 Black-Scholes model with market index 

 

 

3.8.2 Share purchase commitment   

 

 

 



 

Konstantin Rybakov                                                   Derivative Pricing                                               Page 37 of 61  

Section 4 Derivative Prices 
  

  

In this section, the derived risk-neutral probabilities are applied to calculate the derivative prices. 

4.1 General model specifications 

The derivative prices are first discussed within the context of general model specifications and then applied 

to different financial instruments. 

4.1.1 Discrete model 

 

4.1.2 Continuous model 

The option price is calculated as the expectation of the option payoff under the risk-neutral probability 

distribution: 

(4.1)  𝑉 = 𝑒−𝑟𝑇 × 𝐸𝑄[𝐹(𝑆)] 

The payoff function of the stock price call option is defined as follows: 

(4.2)  𝐹𝑐𝑎𝑙𝑙(𝑆) = (𝑆 − 𝐾)+ 

where K is the strike price and function x+ is defined as x+=max[x, 0]. The payoff function of the stock price 

put option is defined as follows: 

(4.3)  𝐹𝑝𝑢𝑡(𝑆) = (𝐾 − 𝑆)+ 

The expectations are taken with respect to risk-neutral probabilities described by the following equation 

𝑆𝑡+𝑑𝑡 = 𝑆𝑡 × 𝑒
(𝑟−𝑑−

𝜎2

2
)𝑑𝑡+𝜎√𝑑𝑡𝜀𝑡 = 𝑆0𝑒

(𝑟−𝑑−
𝜎2

2
)×(𝑡+𝑑𝑡)+𝜎√𝑡+𝑑𝑡×𝜀

 

As an example, suppose that 𝐹(𝑆) = 𝑆. Then  

𝐸𝑄[𝑆𝑡] = 𝑆0 × 𝑒
(𝑟−𝑑−

𝜎2

2
)×𝑡

× 𝑒
𝜎2𝑡
2 = 𝑆0𝑒

(𝑟−𝑑)𝑡 

 

4.2 Black-Scholes formula 

Standard and alternative formula presentation and formula derivation are presented below. 

4.2.1 Forward price 

The payoff function in the forward contract is described as 𝐹(𝑆) = 𝑆 − 𝐾 and the forward prices is described 

respectively as  
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𝑉 = 𝑒−𝑟𝑇 × 𝐸𝑄[𝑆 − 𝐾] 

In the Black-Scholes case, the equation is represented respectively as follows 

(4.4)  𝑉𝑓𝑤𝑑 = 𝑒−𝑟𝑇 × 𝑆 × 𝑒(𝑟−𝑑)𝑇 − 𝐾𝑒−𝑟𝑇 = 𝑆 × 𝑒−𝑑𝑇 − 𝐾𝑒−𝑟𝑇 

At the issued date the price 𝐾 is set so that 𝑉𝑓𝑤𝑑 = 0 or respectively 

(4.5)  𝐾 = 𝑆0 × 𝑒
(𝑟−𝑑)𝑇 = 𝐸𝑄[𝑆𝑇] 

After the issue date the price of a forward contract deviates from the original zero price and is described by 

the following equation: 

(4.6)  𝑉𝑓𝑤𝑑 = 𝑒−𝑟𝑇 × 𝑆 × 𝑒(𝑟−𝑑)𝑇 = (𝑆 − 𝑆0) × 𝑒
−𝑑𝑇 

 

4.2.2 Dividends 

This section derives the price for a fixed dividend payment 𝐹(𝑆) = 𝐷 and the price for continuous dividend 

cash flow 𝐹(𝑆𝑡) = 𝑑 × 𝑆𝑡. The equation for the fixed dividends is straightforward: 

𝑉(𝐷) = 𝐷 × 𝑒−𝑟𝑡 

The value of the continuous dividend cash flow is described as follows 

𝑉 = ∫ 𝑑 × 𝑒−𝑟𝑡 × 𝐸𝑄(𝑆𝑡)𝑑𝑡 = 𝑑 × 𝑡 × 𝑆0

𝑡

0

 

The conversion of the fixed discrete dividends sequence into the implied parameter 𝑑 is described by the 

following equation: 

𝑑 =
𝐷0 × ∑ 𝑒−𝑟𝑡𝑖𝑖

𝑇 × 𝑆0
 

In the case of regular fixed dividend payment frequency (e.g. monthly frequency), the above equation can 

be simplified as follows: 

(4.7)  𝑑 =
𝐷0

𝑇 × 𝑆0
×
1 − 𝑒−𝑟×(𝑛+1)/12

1 − 𝑒−𝑟/12
 

where 𝑛 is the number of fixed dividend payments over the contract term 𝑇. (The equation can be directly 

modified for other payment frequencies). 

4.2.3 Call / Put price 

This section provides a standard (Wikipedia) presentation of the Black-Scholes formula and then shows 

how the formula is derived from the risk-neutral probabilities described in the previous section. 
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 Standard presentation 

Standard Black-Scholes option prices are described by the following equations.20 

Call option 

(4.8)  𝑉𝑐𝑎𝑙𝑙 = 𝑁(𝑑1) × 𝑆𝑒
−𝑑𝑇 − 𝑁(𝑑2) × 𝐾𝑒

−𝑟𝑇 

Put option 

(4.9)  𝑉𝑝𝑢𝑡 = −𝑁(−𝑑1) × 𝑆𝑒
−𝑑𝑇 +𝑁(−𝑑2) × 𝐾𝑒

−𝑟𝑇 

where parameters 𝑑1 and 𝑑2 are estimated as 

(4.10)  {
𝑑1 =

1

𝜎√𝑇
× [ln

𝑆

𝐾
+ (𝑟 − 𝑑 +

𝜎2

2
)𝑇]

𝑑2 = 𝑑1 − 𝜎√𝑇

 

 

 Alternative representation 

Alternative representation of the Black-Scholes formula can be represented as follows. The forward price 

in Black-Scholes model is described by the following equation: 

𝐹 = 𝑆 × 𝑒(𝑟−𝑑)𝑇 

Replacing spot price with the forward price, the call and put option prices can be described by the following 

formulas. 

Call option 

(4.11)  𝑉𝑐𝑎𝑙𝑙 = 𝑒−𝑟𝑇 × [𝑁(𝑑1) × 𝐹 − 𝑁(𝑑2) × 𝐾] 

Put option 

(4.12)  𝑉𝑝𝑢𝑡 = 𝑒−𝑟𝑇 × [−𝑁(−𝑑1) × 𝐹 + 𝑁(−𝑑2) × 𝐾] 

Where parameters 𝑑1 and 𝑑2 are estimated as 

                                                      

20 https://en.wikipedia.org/wiki/Black%E2%80%93Scholes_model 
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(4.13)  {
𝑑1 =

1

𝜎√𝑇
× [ln

𝐹

𝐾
+
𝜎2

2
𝑇]

𝑑2 = 𝑑1 − 𝜎√𝑇

 

 

 Non-linear variance of cumulative residuals  

Under the geometric Brownian motion assumption, the cumulative residuals term is equal to the sum of 

independently distributed period-specific terms with variance parameter equal to 𝜎2 × 𝑑𝑡. The variance 

parameter of the cumulative residual term equals to 𝜎2 × 𝑇 (the variance term increases linearly with the 

derivative contract maturity term). 

In certain cases, empirical evidence does not support the assumption of linear relationship between the 

maturity term and variance of the cumulative residual term. Therefore, the above equations need to be 

generalized for a generic functional form 𝜎(𝑇) of the cumulative residual term. The generalized equations 

are presented as follows: 

  

𝑑1 =
1

𝜎(𝑇)
× [ln

𝑆

𝐾
+ (𝑟 − 𝑑) × 𝑇 +

𝜎2(𝑇)

2
] 

And 

𝑑2 = 𝑑1 − 𝜎(𝑇) 

The equations (4.11) and (4.12) for the call/put prices remain the same with the modified equations for the 

parameters 𝑑1 and 𝑑2. [NTD: Need to show it formally] 

 Formula derivation 

We illustrate below how the equations are derived as the risk-neutral expectations of the call and put payoff 

functions. Under the geometric Brownian motion, the distribution of the stock price ST is described by the 

following equation: 

𝑆𝑇 = 𝑆0 × 𝑒
𝜇𝑇+𝜎√𝑇𝜀𝑇 

where 𝜀𝑇~𝑁(0,1). To calculate the option prices, the expectations are calculated for parameters (𝜇, 𝜎) and 

then the parameter 𝜇 is replaced with the equivalent risk-neutral parameter 𝜇 → 𝑟 − 𝑑 −
𝜎2

2
.21  

𝑉𝑐𝑎𝑙𝑙 = 𝑒−𝑟𝑇 ×
1

√2𝜋𝑇𝜎
× ∫ (𝑆𝑒𝑥 − 𝐾) × 𝑒

−
(𝑥−𝜇𝑇)2

2𝜎2𝑇 𝑑𝑥 = 𝑒−𝑟𝑇 × 𝑆 × 𝑒𝜇𝑇+
𝜎2𝑇
2 × 𝑁(−

ln
𝐾
𝑆
− 𝜇𝑇 − 𝜎2𝑇

𝜎√𝑇
)

∞

ln
𝐾
𝑆

− 𝑒−𝑟𝑇

× 𝐾 × 𝑁(−
ln
𝐾
𝑆
+ 𝜇𝑇

𝜎√𝑇
) 

                                                      

21 The Black-Scholes formula is derived for the call option only. The calculations presented in the notes can be extended directly to 
the Black-Scholes formula for the put option. 
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After replacing 𝜇 → 𝑟 − 𝑑 −
𝜎2

2
, the above equation is simplified as follows: 

𝑒−𝑟𝑇 × 𝑒𝜇𝑇+
𝜎2𝑇
2 = 𝑒−𝑑𝑇 

and 

−
ln
𝐾
𝑆
+ 𝜇𝑇 + 𝜎2𝑇

𝜎√𝑇
=
ln
𝑆
𝐾
+ (𝑟 − 𝑑 +

𝜎2

2
) 𝑇

𝜎√𝑇
= 𝑑1 

Therefore, the discount expected risk-neutral value of the call payoff function equals exactly to the equation 

described by the Black-Scholes formula. 

 

4.3 CDS 

Suppose that K is the compensation at default (strike price); 𝑋 = 𝛼𝑆 is recovery at default state; and 
𝐹(𝑆)

𝑆
=

−𝜆 are a constant. Then the probability of the process moving to the absorbing state over the period T 

equals to 𝑃𝑋 = 1 − 𝑒−𝛾𝑇 and the discounted expected payoff is equal to 

𝑉 = (𝐾 − 𝑋) × ∫ 𝛾𝑒−𝑟𝑡𝑒−𝛾𝑡𝑑𝑡
𝑇

0

 

For a fixed value of 𝛾, the equation can be simplified as follows. 

𝑉 = (𝐾 − 𝑋) ×
𝛾

𝛾 + 𝑟
× (1 − 𝑒−(𝛾+𝑟)𝑇) 

 

4.3.1 Zero-coupon bonds 

Zero-coupon bond is a transaction which pays fixed $1 amount at a specific period 𝑡 in the future conditional 

that the bond is not in the default state. Therefore, it can be viewed as similar to a forward contract in Black-

Scholes model. The price of zero-coupon bond is described by the following equation: 

𝑉𝑧𝑐 = 𝑒−(𝛾+𝑟)𝑇 = 𝑒−𝑖𝑇 

where 𝛾 =
𝑖−𝑟

1−𝛼
= 𝑖 − 𝑟 (and 𝛼 = 0). Prices of zero-coupon bonds are applied to price fixed payments which 

are conditional on the non-default state of the underlying asset. 

4.3.2 CDS price 

CDS price is derived in this section assuming that dividends are paid continuously and are specified as a 

fixed share of current asset price. Conversion of discrete into continuous dividends is discussed in Section 

0. 

𝐷 = 𝑑 × 𝑆 
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The value of put option is obtained when the actual hazard rate 𝛾 is replaced with the risk-neutral hazard 

rate: 𝛾 →
𝑆

𝑆−𝑋
× [

𝐹(𝑆)

𝑆
+ 𝑑 − 𝑟]. 

In the case when the put option represents the CDS contract on the bond transaction,  

𝛾 =
(𝑑 − 𝜆) − 𝑟

1 − 𝛼
=
𝑖 − 𝑟

1 − 𝛼
 

where  𝑖 = 𝑑 − 𝜆, 𝐾 = 𝑘𝑆, and 𝐾 − 𝑋 = (𝑘 − 𝛼)𝑆. The above equation can be represented then equivalently 

as follows: 

(4.14)  𝑉 = 𝑆(𝑖 − 𝑟) ×
𝑘 − 𝛼

1 − 𝛼
× ∫ 𝑒−𝑟𝑡𝑒−𝛾𝑡𝑑𝑡

𝑇

0

 

where 𝑒−𝛾𝑡 represents the probability that the bond default does not default prior to period 𝑡. The equation 

is interpreted as follows: the CDS seller receives the periodic payment at the rate equal to (𝑖 − 𝑟) ×
𝑘−𝛼

1−𝛼
 

conditional on the fact that the bond is not in the default state. (Specifically, 𝑆(𝑖 − 𝑟) (
𝑘−𝛼

1−𝛼
) 𝑑𝑡 term represents 

periodic CDS payment in period 𝑡, 𝑒−𝑟𝑡 represents risk-free discount factor, and 𝑒−𝛾𝑡 represents the 

probability that the bond is in the non-default state). 

The interpretation is valid whenever the bond is priced consistently with the bond default hazard rate (𝑖 =

𝑟 + 𝛾 × (1 − 𝛼)). Otherwise, the above equation shows that risk-neutral non-default probability 𝑒−
𝑑−𝑟

1−𝛼
𝑡
 must 

be used in the CDS value calculations. The value 

(4.15)  𝛾̃ =
𝑖 − 𝑟

1 − 𝛼
 

 can be interpreted as implied bond default hazard rate. 

The term  

(4.16)  𝐴𝐴𝐹 = ∫ 𝑒−𝑟𝑡𝑒−𝛾𝑡𝑑𝑡
𝑇

0

 

is interpreted as expected annuity adjustment factor (AAF), which is defined as the discounted value of the 

sum of periodic fixed $1 payments conditional on the non-default state of the underlying asset. The CDS 

price is represented as  

𝑉 = 𝑆(𝑖 − 𝑟) ×
𝑘 − 𝛼

1 − 𝛼
× 𝐴𝐴𝐹 

and equivalent periodic fee is described by the following equation 

𝑣 =
𝑉

𝐴𝐴𝐹
= 𝑆(𝑖 − 𝑟) ×

𝑘 − 𝛼

1 − 𝛼
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Alternatively, CDS price can be quoted as a percentage of the notional amount 𝑆, which is paid periodically 

to the CDS seller: 

(4.17)  𝑓 = (𝑖 − 𝑟) ×
𝑘 − 𝛼

1 − 𝛼
= 𝛾̃ × (𝑘 − 𝛼) 

This is a standard representation of the CDS price (see the “Financial Guarantee” guide which contains a 

more detailed discussion of the CDS valuation models). If 𝑘 = 1, the equation becomes a standard CDS 

price equation 

(4.18)  𝑓 = 𝑖 − 𝑟 

 

4.3.3 Intercompany financial guarantees 

A financial guarantee of a loan transaction can be viewed as a CDS instrument, which price is adjusted for 

the counterparty (guarantor) risk. Three assets are represented by three bonds: (i) a risk-free bond; (ii) a 

bond issued by the parent entity; and (iii) the bond issued by the subsidiary entity. The binomial tree is 

presented as the movement in the ‘parent’ bond and ‘child’ bond prices, where the ‘parent’ bond is the bond 

issued by the parent entity and the ‘child’ bond is issued by the subsidiary entity.  

The two absorbing states correspond to the borrower and guarantor default states. A more detailed 

discussion of the loan guarantee valuation is provided in the ‘Financial Guarantees’ guide. 

 

4.4 Bonds 

 

4.4.1 Black formula 

 

4.4.2 Bond CDS valuation 

 

 

4.4.3 Convertible bonds 

In this section we present the results of convertible bond valuation performed for the bond illustrated in 

Section 2.6.1. The valuation is performed using Black-Scholes model. In Appendix Error! Reference 

source not found. the results of Black-Scholes model are compared to the results of Bloomberg OVCV 

tool. 

The option valuation tool uses the following input parameters: 

1. Terms of the bond transaction: maturity date, coupon rate, coupon frequency and day count 
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2. Terms of conversion option: stock conversion price, last conversion date (typically equals to 

maturity date minus one day), valuation date of the option valuation analysis 

3. Bond market price as of the valuation date 

4. Stock historical prices and price as of the valuation date 

5. Risk-free rate 

Application of the convertible bond valuation is illustrated for the bond which terms are summarized in 

Bloomberg print screen shown in Section 2.6.1. The bond was issued by Southwest Airlines Co. at the end 

of April 2020 in the mid of COVID-19 economic crisis. The convertible bond allowed to raise the funds at a 

low cost (fixed 1.25% coupon rate). The value of the bond was primarily driven by the expectations that the 

COVID-19 crisis is temporary, the stock price of the company will recover and the high return on the bond 

will be generated through conversion of bond into the company shares. 

The historical share price, strike price set in the convertible bond terms, and bond issue date are illustrated 

in the exhibit below. 

Exhibit 4.1 Movement in the historical share prices and convertible bond strike price 

 

Technically, the conversion option can be exercised at any time prior to the last conversion date and, 

therefore, the option is similar to American call option. However, for simplicity we assume that the option is 

exercised exactly on the last conversion date and, therefore, is similar to the European call option. 

The value of bond convertibility option can be represented either as (i) change in the bond price; or as (ii) 

change in the bond yield. The steps of option valuation are summarized as follows. 

1. Estimate stock price volatility (denoted as 𝜎) based on the historical movement in the share prices. 

2. Estimate the call option value (denoted as 𝐶𝑠ℎ𝑎𝑟𝑒) for each traded share using Black-Scholes 

formula (4.8) for European call option. 

𝐶𝑠ℎ𝑎𝑟𝑒 = 𝑁(𝑑1) × 𝑆𝑒
−𝑑𝑇 − 𝑁(𝑑2) × 𝐾𝑒

−𝑟𝑇 

where 

{
𝑑1 =

1

𝜎√𝑇
× [ln

𝑆

𝐾
+ (𝑟 − 𝑑 +

𝜎2

2
)𝑇]

𝑑2 = 𝑑1 − 𝜎√𝑇
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3. Multiply call option price 𝐶𝑠ℎ𝑎𝑟𝑒  by the conversion ratio to estimate the value of call option per bond 

par value (denoted as 𝐶𝑝𝑎𝑟). The value 𝐶𝑝𝑎𝑟 represents the price of the convertibility option 

represented in terms of bond price change. 

4. For convertible option estimated based on bond market price 𝑃𝐹𝑀𝑉 , proceed with the following 

steps: 

► Subtract the value 𝐶𝑝𝑎𝑟 from the bond price 𝑃𝐹𝑀𝑉 to estimate the bond floor price 𝑃𝑓𝑙𝑜𝑜𝑟 . 

► Estimate the yield rate 𝑦𝐹𝑀𝑉 based on bond market price 𝑃𝐹𝑀𝑉. 

► Estimate the bullet bond yield rate 𝑦𝑏𝑢𝑙𝑙𝑒𝑡 based on the price 𝑃𝑓𝑙𝑜𝑜𝑟. 

► Estimate bond yield adjustment as ∆𝑦 = 𝑦𝑏𝑢𝑙𝑙𝑒𝑡 − 𝑦𝐹𝑀𝑉. The yield ∆𝑦 represents the bond yield 

rate adjusted for the convertibility option. 

5. For convertible option estimated based on bond credit spread, proceed with the following steps 

► Estimate bullet bond yield rate𝑦𝑏𝑢𝑙𝑙𝑒𝑡  as risk-free rate plus credit spread. 

► Estimate bond floor price based on bond coupon rate and discount rate 𝑦𝑏𝑢𝑙𝑙𝑒𝑡. 

► Estimate bond FMV as bond floor price plus 𝐶𝑝𝑎𝑟. 

► Estimate bond yield rate 𝑦𝐹𝑀𝑉  based on bond FMV value. 

► Estimate bond yield adjustment as ∆𝑦 = 𝑦𝑏𝑢𝑙𝑙𝑒𝑡 − 𝑦𝐹𝑀𝑉. 

The second approach described in item 5 is the default approach in Bloomberg OVCV option valuation tool 

(see Appendix Error! Reference source not found. for further details). The approach described in item 4 

can be produced by the OVCV tool if the credit spread parameter is replaced with the implied credit spread 

value. [Check] 

Application of the option valuation steps are illustrated for the convertible bond issued by Southwest Airlines 

Co. All calculations are performed per 100 par value of the bond. 

1. Volatility 𝜎 was estimated at 61.6% using a 1-year sample daily share price data and applying the 

following formula 

2. The value 𝐶𝑠ℎ𝑎𝑟𝑒 was estimated at 16.28 based on equation (4.8). 

3. The value 𝐶𝑝𝑎𝑟 was estimated as 𝐶𝑝𝑎𝑟 = 2.6 × 16.28 = 42.31. 

4. For convertible option estimated based on bond market price 𝑃𝐹𝑀𝑉 = 121.73, the yield adjustment 

was estimated as follows: 

► The bond floor price 𝑃𝑓𝑙𝑜𝑜𝑟  was estimated at 79.42. 

► The yield rate 𝑦𝐹𝑀𝑉 was estimated at -2.88% 

► The yield rate 𝑦𝑏𝑢𝑙𝑙𝑒𝑡 was estimated at 6.22%. 

► The yield adjustment was estimated at ∆𝑦 = 9.11%. 

5. For convertible option estimated based on bond credit spread of 1.93%22, the yield adjustment was 

estimated as follows. 

► Bullet bond yield rate𝑦𝑏𝑢𝑙𝑙𝑒𝑡 was estimated at 2.33%.23 

                                                      

22 The credit spread was selected based on the OVCV tool (see Appendix Error! Reference source not found.). Alternatively, credit 
spread can be estimated based on interest benchmarking analysis. 

23 Risk-free rate was estimated at 0.4% based on Libor swap curves. 
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► Bond floor price was estimated at 95.12. 

► Bond FMV price was estimated at 137.44. 

► The 𝑦𝐹𝑀𝑉 yield rate was estimated at -5.39; 

► The yield adjustment was estimated at ∆𝑦 = 7.72%. 

Adjustment for convertibility, estimated in item 4 above shows that if the bond was issued as a bullet bond, 

it would be priced at a significant discount (6.22% compared to the 1.25% coupon rate and 2.33% market 

discount rate). Including the convertibility option into the terms of the bond mitigates the high cost of 

financing. 

The following data is required to perform the valuation of a convertible bond: 

1. Terms of the convertible bond (obtained through Bloomberg database) 

► Last conversion date (or maturity date if same as last conversion date), 𝑇 

► Stock conversion price, 𝐾 

2. Stock price to estimate the stock price volatility (obtained through Bloomberg or yahoo.finance24) 

3. Convertible bond market price 

4. Risk-free rate (estimated using US$ Libor swap rates, overnight interest swap (OIS ) curve, or US 

treasury yield rates (obtained through Bloomberg database).  

 

4.5 Leases 

In the case of lease contracts, the option pricing theory is applied to estimate the price of the residual value 

risk. This section presents three alternative approaches to price residual value risk. 

4.5.1 Black-Scholes approach 

 

4.5.2 CDS approach 

 

4.5.3 Mixed approach 

 

 

4.6 Trader approach to derivative pricing 

 

                                                      

24 https://finance.yahoo.com/quote/NAV/history?p=NAV 
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Section 5 Arbitrage vs Insurance Pricing 
  

  

This section compares the arbitrage and insurance approaches to derivative pricing and illustrates the 

application of the two approaches for different financial models. 

5.1 CDS 

In this section, we  

5.1.1 Relation between insurance and arbitrage prices 

Under the insurance interpretation of the CDS contract, the periodic compensation to the CDS seller is 

estimated as follows. The value of the CDS contract is assessed based on the expected loss to the CDS 

seller. The CDS periodic fee is set such that the CDS seller’s expected cost equals to the expected benefit. 

Suppose that 𝛾 denotes default hazard rate on the underlying bond estimated based on the analysis of 

comparable bonds historical default data. The expected loss (denoted as EL) to the CDS seller is estimated 

as follows: 

𝐸𝐿 = (𝑘 − 𝛼) × 𝑆 × ∫ 𝛾 × 𝑒−𝛾𝑡 × 𝑒−𝑟𝑡 × 𝑑𝑡
𝑇

0

 

where 𝛾 × 𝑒−𝛾𝑡 is the pdf function of the bond default event and 𝑒−𝑟𝑡 is risk-free discount factor. Assuming 

constant parameter 𝛾, the equation can be represented equivalently as 

𝐸𝐿 = 𝛾 × (𝑘 − 𝛼) × 𝑆 × 𝐴𝐴𝐹 

The expected benefit to the CDS seller (denoted as EB) is estimated as 

𝐸𝐵 = 𝑓 × 𝑆 × 𝐴𝐴𝐹 

The fee 𝑓 is estimated from the equation 𝐸𝐿 = 𝐸𝐵: 

(5.1)  𝑓 = 𝛾 × (𝑘 − 𝛼) 

Under the arbitrage pricing approach, the CDS periodic fee was derived in Section 4.3.2 as  

(5.2)  𝑓 = 𝛾̃ × (𝑘 − 𝛼) 

where 

(5.3)  𝛾̃ =
𝑖 − 𝑟

1 − 𝛼
 

Based on the considerations above, the comparison between the insurance and arbitrage pricing 

approaches can be summarized as the following statement. 
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Lemma.  Under both the insurance and arbitrage pricing approaches, the CDS fee is estimated using the 

same equation (5.1) and (5.2) but by applying different estimation approach an interpretation of parameter 

𝛾: 

1. Under the insurance approach, parameter 𝛾 is interpreted as default hazard rate and is estimated 

based on historical default data of comparable bond transactions; 

2. Under the arbitrage approach, parameter 𝛾̃ is interpreted as implied default hazard rate and is 

derived from the bond market price using equation (5.3). The implied hazard rate equals to the risk 

premium component (𝜋 = 𝑖 − 𝑟) of the bond interest rate adjusted for the defaulted bond recovery 

rate. 

 

5.1.2 Application of insurance and arbitrage pricing 

Application of the arbitrage and insurance pricing is illustrated using the FY2020 market yield data for bonds 

issued in US$ Industrial sector and Moody’s tables with historical bond default rates.  

 

5.2 Leases  
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Section 6 Parameter Estimation 
  

  

This section described parameter estimation methodologies for the described derivative models. The data 

used in the derivative pricing can be presented in different forms. 

1. A derivative for a single instrument is priced. The price information for the underlying instrument is 

available as a time-series data. This case is applicable for example when a derivative for an 

underlying stock traded in the market is priced.  

2. Multiple derivatives for multiple instruments are priced. The price information for the underlying 

instruments is available as a time-series data. This case is applicable for example when a portfolio 

of derivatives for underlying stocks traded in the market are priced. 

3. Multiple derivatives for multiple instruments are priced. The price information for the underlying 

instruments is available for a single period of time. This case is applicable for example when a 

derivative for lease agreement is priced. Lease and underlying asset prices are available only at 

the lease agreement date 

Cases 2 and 3 are analyzed as a collection of single instruments. However, estimation of some parameters, 

such as for example volatility, is based on the portfolio data which may be aggregated and screened for 

outliers. 

6.1 Black-Scholes model 

Under the Black-Scholes model, the following list of parameters is estimated. 

1. Risk-free rate 𝑟 

2. Dividend rate 𝑑 

3. Volatility 𝜎 and drift parameter 𝜆.25 

 

6.1.1 Risk-free rate 

Risk-free rate is estimated based on various yield series, such as 

1. US$ Treasury rates 

2. Libor swap curve 

3. Overnight index swap (OIS) curve26 

The curves can be obtained through Bloomberg database.27 A more detailed discussion of the risk-free rate 

is provided in XXX. 

                                                      

25 Note that while parameter 𝜆 is not used directly in the derivative price equation, its estimation is required for volatility parameter 
estimation. 

26 The industry practice of applying discount rates based on the Libor and OIS rates is discussed in J. Hull and A. White paper “Libor 
vs. OIS: Derivative Discounting Dilemma”, Journal of Investment Management, Vol. 11, No. 3, 14-27.   

27 For the US$-denominated risk-free rates, the respective Bloomberg curves are (i) C802 for the US$ Treasury yields; (ii) USSW for 
US$ Libor swap rates; and (iii) OSSO for OIS rates. 
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6.1.2 Volatility parameter 

Estimation of price volatility depends on the assumptions about the underlying asset value process. 

 Standard Black-Scholes model 

Volatility in Black-Scholes formula is estimated based on equation (2.2) as follows 

(6.1)  𝜎̂ = 𝑠𝑡𝑑𝑒𝑣 [
∆ ln 𝑆𝑡

√𝑑𝑡
] 

The equation assumes that the time series 𝑆𝑡 of the underlying asset price is available. The equation is a 

proxy in the case of the price process with mean-reversion property. More generally, the parameter can be 

estimated based on the following simple linear regression model:  

(6.2)  
∆ ln 𝑆𝑡+𝑑𝑡

√𝑑𝑡
= (𝜇 − 𝜌 ln 𝑆𝑡)√𝑑𝑡 + 𝜎𝜀𝑡 

where parameters 𝜇, 𝜌 and 𝜎 are estimated from the auto-regression model described by equation (6.2).  

 Black-Scholes model of leases 

 

6.1.3 Dividend rate  

In practice, dividends are discrete and paid at specific dates. Therefore, the equation for the risk-neutral 

average of the stock price should be represented equivalently as follows: 

(6.3)  𝐸𝑄[𝑆𝑡+𝑑𝑡] = 𝑆𝑡 × [1 + 𝑟𝑑𝑡] − 𝐷
𝐹  

where 𝐷𝐹 = 𝑑 × 𝑆 × 𝑑𝑡 is the discrete dividend paid in period 𝑡. The dividend payment reduces the price by 

the dividend value. The risk-neutral price equation can be represented as  

𝑆𝑡+𝑑𝑡 = 𝑆𝑡 × 𝑒
(𝑟−

𝜎2

2
)𝑑𝑡+𝜎√𝑑𝑡𝜀𝑡 − 𝐷𝐹 

 Discrete dividends: price decomposition 

The model with discrete dividends can be interpreted as follows. The dividend-paying asset is decomposed 

into a portfolio of zero-dividend asset with price 𝑆 and a portfolio of forward contracts 𝐹𝑡,𝑇
𝐷 , which correspond 

to each dividend payment 𝐷𝑡. The value of each contract is calculated respectively as 

𝐹𝑡,𝑇
𝐷 = 𝐷𝑡 × 𝑒

𝑟(𝑇−𝑡) 

In the model specification, the risk-neutral price is decomposed into two components: (i) risk-neutral price 

of zero-dividend asset (which is calculated using Black-Scholes formula with 𝑑 = 0) and (ii) a sum of 

dividend futures calculated as 
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(6.4)  𝐷∗ =∑𝐷𝑡 × 𝑒
𝑟(𝑇−𝑡)

𝑡

 

where the sum is taken over all discrete dividend paying dates 𝑡. 

In the case of call/put option estimation, the Black-Scholes formula is implemented as follows.  

1. Adjust the strike price by the dividend cash flow as follows: 

(6.5)  𝐾∗ = 𝐾 + 𝐷∗ 

where 𝐾 is the option strike price. 

2. Apply Black-Scholes call/put equation with 𝑑 = 0 and adjusted strike price 𝐾∗. 

 

 Discrete dividends: conversion of to continuous dividends 

Under alternative approach, the cash flow of discrete dividend payments is converted to parameter 𝑑 which 

describes continuous dividend payments. The option price is estimated under the approach using standard 

Black-Scholes equations for continuous dividend payments.  

The conversion from discrete to continuous dividends is described by the following equation, assuming 

dividend payment frequency denoted as 𝑚, where 𝑚 = 1 (annual frequency), 𝑚 = 2 (semi-annual 

frequency), 𝑚 = 4 (quarterly frequency), or 𝑚 = 12 (monthly frequency): 

(6.6)  𝑑 = −
1

𝑇
× ln [1 −

𝐷0
𝑆0
× 𝑒−

𝑟
𝑚 ×

1 − 𝑒−
𝑟×𝑛
𝑚

1 − 𝑒−
𝑟
𝑚

] 

where 𝑛 is the number of fixed dividend payments over the contract term 𝑇. The equation is derived formally 

in Appendix B.3. 

 

6.2 CDS model 

Under the CDS model, the following list of parameters is estimated. 

1. Risk-free rate 𝑟 

2. Dividend rate 𝑑 

3. Counter-party risk  

4. Recovery rate 
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6.2.1 Dividends rate 

In practice, the lease fee (interpreted as dividends) is fixed over the term of the lease contract. Therefore, 

parameter 𝑑 is an implied parameter that must be estimated. Similar to the Black-Scholes model, the implied 

parameter 𝑑 is estimated from the condition that the risk-neutral price of actual dividends equals to the risk-

neutral price of continuous dividends. 

In practice, the leases are priced only as of the lease issue date and the lease payments are set as fixed 

periodic payments over the lease term. To derive the risk-neutral probabilities for the model, we assume 

that the underlying theoretical model of the lease residual value is the “continuous pricing” model with 

unknown parameter 𝑑, which is estimated from the condition which equates the FMV of the lease payments 

under the “continuous pricing” and “issue date pricing” models.  

Under the “continuous pricing” model, the value of zero-coupon bond is equal to 

𝑉𝑡
𝑧𝑐 = 𝑒−𝑖×𝑡 

and implied hazard rate is estimated as 

𝛾 =
𝑖 − 𝑟

1 − 𝛼
 

Suppose that the market depreciation of the lease asset is described by the following equation 

𝐹(𝑆) = −𝜆 × 𝑆 

or (𝑆𝑡 = 𝑒−𝜆𝑡 × 𝑆0). The FMV of continuous and discrete lease payments are calculated respectively as 

(𝑖 + 𝜆)𝑆0 ×∫ 𝑒−𝜆𝑡 × 𝑒−𝑖×𝑡 × 𝑑𝑡 = 𝑆0 × [1 − 𝑒
−(𝑖+𝜆)𝑇] = 𝐷0 ×∑𝑒−𝑖×𝑡𝑖

𝑖

𝑇

0

 

where 𝐷0 is a constant periodic lease payment. The unknown parameter 𝑖 is estimated from the above 

equation. A necessary condition for the existence of positive solution 𝑖 is 

𝐷0 ×∑1

𝑡𝑖

≥ 𝑆0 × [1 − 𝑒
−𝜆𝑇] 

(Sum of cost-adjusted lease payments over the lease term at least compensates the depreciation of the 

lease asset over the lease term). In the case of monthly payments, the equation can be represented as 

follows: 

𝑆0 × [1 − 𝑒
−(𝑖+𝜆)𝑇] = 𝐷0 ×

1 − 𝑒−𝑖×
𝑛+1
12

1 − 𝑒−𝑖×
1
12

 

where 𝑛 is the number of monthly dividend payments over the term of the lease contract. 
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Section 7 Summary 
  

  

This section presents the summary of the key results and equations which are spread out across this guide. 

The section also provides a link to the sections were the equations are derived and discussed in more 

detail. 
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Appendix A Diffusion Models 
  

  

… 

A.1 Model specification 

 

A.2 Ito’s lemma 
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Appendix B Technical Comments 
  

  

In this section we provide some technical integration formulas used in the models described in this guide. 

B.1 Risk-neutral probabilities 

Technical derivation of distributions under risk-neutral probabilities are presented below for Black-Scholes 

models.  

Expected value 

Risk-neutral probabilities are derived as  

(B.1)  

{
 
 

 
 𝑞𝑢 = 𝐴𝑢(1 + 𝑅) =

𝑆(1 + 𝑅 − 𝐷) − 𝑆𝑑

(𝑆𝑢 − 𝑆𝑑)

𝑞𝑑 = 𝐴𝑑(1 + 𝑅) =
−𝑆(1 + 𝑅 − 𝐷) + 𝑆𝑢

(𝑆𝑢 − 𝑆𝑑)

 

The expected value of the process under risk-neutral probabilities equals 

(B.2)  𝐸𝑆̃ = 𝑞𝑢 × 𝑆𝑢 + 𝑞𝑑 × 𝑆𝑑 = 𝑆(1 + 𝑅 − 𝐷) = 𝑆 × [1 + (𝑟 − 𝑑) × 𝑑𝑡] 

 

Black-Scholes model 

The continuous model is approximated y the following binomial model: 

Set of states: 

(B.3)  

{
 
 

 
 𝑆𝑢 = 𝑆1−𝜌𝑑𝑡 × [1 + (𝜇 +

𝜎2

2
) 𝑑𝑡 + 𝜎√𝑑𝑡] 𝑝𝑢 =

1

2

𝑆𝑑 = 𝑆1−𝜌𝑑𝑡 × [1 + (𝜇 +
𝜎2

2
) 𝑑𝑡 − 𝜎√𝑑𝑡] 𝑝𝑑 =

1

2

 

Risk-neutral probabilities: 

(B.4)  

{
 
 

 
 
𝑞𝑢 =

1

2
+
𝑟 − 𝑑 − 𝜇 −

𝜎2

2
+ 𝜌 ln 𝑆𝑡

2𝜎
× √𝑑𝑡

𝑞𝑑 =
1

2
−
𝑟 − 𝑑 − 𝜇 −

𝜎2

2
+ 𝜌 ln 𝑆𝑡

2𝜎
× √𝑑𝑡

 

The expected value of the process under risk-neutral probabilities equals 
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𝐸𝑆̃ = 𝑆 × [1 + (𝑟 − 𝑑) × 𝑑𝑡] 

The second moment is estimated as 

𝐸𝑆̃2 = 𝑞𝑢 × (𝑆𝑢)2 + 𝑞𝑑 × (𝑆𝑑)2

= 𝑆2−2𝜌𝑑𝑡

× [(
1

2
+
𝑟 − 𝑑 − 𝜇 −

𝜎2

2
+ 𝜌 ln 𝑆𝑡

2𝜎
× √𝑑𝑡) × (1 + 2𝜎√𝑑𝑡 + 2(𝜇 +

𝜎2

2
)𝑑𝑡 + 𝜎2𝑑𝑡)

+ (
1

2
−
𝑟 − 𝑑 − 𝜇 −

𝜎2

2
+ 𝜌 ln 𝑆𝑡

2𝜎
× √𝑑𝑡) × (1 − 2𝜎√𝑑𝑡 + 2(𝜇 +

𝜎2

2
)𝑑𝑡 + 𝜎2𝑑𝑡)]

= 𝑆2−2𝜌𝑑𝑡 × [1 + 2(𝜇 +
𝜎2

2
)𝑑𝑡 + 𝜎2𝑑𝑡 + 2(𝑟 − 𝑑 − 𝜇 −

𝜎2

2
+ 𝜌 ln 𝑆𝑡)𝑑𝑡]

= 𝑆2−2𝜌𝑑𝑡 × [1 + (𝜎2 + 2(𝑟 − 𝑑 + 𝜌 ln 𝑆𝑡))𝑑𝑡] = 𝑆
2 × [1 − 2𝜌 ln 𝑆𝑡 𝑑𝑡] × [1 + (𝜎

2 + 2(𝑟 − 𝑑 + 𝜌 ln 𝑆𝑡))𝑑𝑡]

= 𝑆2 × [1 + 𝜎2𝑑𝑡 + 2(𝑟 − 𝑑)𝑑𝑡] 

The risk-neutral variance equals 

(B.5)  𝑉𝑎𝑟 𝑆̃ =  𝐸𝑆̃
2
− (𝐸𝑆̃)

2
= 𝑆2 × [1 + (𝜎2 + 2(𝑟 − 𝑑))𝑑𝑡 − 1 − 2(𝑟 − 𝑑)𝑑𝑡] = 𝑆2 × 𝜎2 × 𝑑𝑡 

 

B.2 Derivative pricing 

Technical derivation of Black-Scholes model equations is presented below. 

Black-Scholes formula 

The Black-Scholes formula is derived based on the following equations: 

1. 
1

√2𝜋𝑇𝜎
× ∫ [𝑒𝛾𝑢 × 𝑒

−
(𝑢−𝜇𝑇)2

2𝜎2𝑇 ] 𝑑𝑢 =
∞

−∞

1

√2𝜋𝑇𝜎
× ∫ 𝑒

−
1

2𝜎2𝑇
×[𝑢2−2𝑢(𝜇𝑇+𝛾𝜎2𝑇)+(𝜇𝑇+𝛾𝜎2𝑇)

2
−2𝜇𝛾𝜎2𝑇2−𝛾2𝜎4𝑇2]

×
∞

−∞

𝑑𝑢 = 𝑒𝜇𝛾𝑇+
𝛾2𝜎2𝑇

2 ; 

2. 
1

√2𝜋𝑇𝜎
× ∫ [𝑒𝛾𝑢 × 𝑒

−
(𝑢−𝜇𝑇)2

2𝜎2𝑇 ] 𝑑𝑢 = 𝑒𝜇𝛾𝑇+
𝛾2𝜎2𝑇

2 × (1 − Φ(𝑑)) = 𝑒𝜇𝛾𝑇+
𝛾2𝜎2𝑇

2 × Φ(−𝑑)
∞

ln
𝐾

𝑆

, where 𝑑 =

ln
𝐾

𝑆
−𝜇𝑇−𝛾𝜎2𝑇

𝜎√𝑇
. 

3. 𝐸[𝑒𝜎√𝑡𝜀𝑡] =
1

√2𝜋𝑡𝜎
× ∫ [𝑒𝑢 × 𝑒

−
u2

2𝜎2𝑡] 𝑑𝑢 = 𝑒
𝜎2𝑡

2
∞

−∞
 

4. 𝐸 [∫ 𝑒
(𝑟−𝑑−

𝜎2

2
)×𝑡+𝜎√𝑡𝜀𝑡 × 𝑑𝑡

𝑇

0
] = ∫ 𝑒

(𝑟−𝑑−
𝜎2

2
)×𝑡+

𝜎2𝑡

2 × 𝑑𝑡
𝑇

0
= ∫ 𝑒(𝑟−𝑑)𝑡 × 𝑑𝑡 =

1−𝑒(𝑟−𝑑)×𝑇

𝑑−𝑟

𝑇

0
. 

 

B.3 Parameter estimation 

Technical derivation of the formulas applied for parameter estimation is presented below. 

Implied dividend rate in Black-Scholes model 



 

Konstantin Rybakov                                                   Derivative Pricing                                               Page 57 of 61  

In this section, we derive formally equation (6.6). 

(B.6)  𝑑 = −
1

𝑇
× ln [1 −

𝐷0
𝑆0
× 𝑒−

𝑟
𝑚 ×

1 − 𝑒−
𝑟×𝑛
𝑚

1 − 𝑒−
𝑟
𝑚

] 

The NPV of the discrete dividend payments equals 

∑ 𝐷0 × 𝑒
−𝑟

𝑖
𝑚 = 𝐷0 × 𝑒

−
𝑟
𝑚 ×

1 − 𝑒−
𝑟×𝑛
𝑚

1 − 𝑒−
𝑟
𝑚

𝑛

𝑖=1
 

The FMV of the continuous dividend payments estimated under risk-neutral probabilities equals 

∫ 𝑑 × 𝑆0 × 𝑒
(𝑟−𝑑)𝑡 × 𝑒−𝑟𝑡𝑑𝑡 = 𝑆0 × (1 − 𝑒

−𝑑𝑇)
𝑇

0

 

The implied dividend rate 𝑑 is estimated from the condition that the FMV of continuous dividend payments 

equals the NPV of discrete dividend payments. The condition is described by equation (B.6). 

Implied dividend in lease model 

Alternatively, the FMV of the continuous dividend payments estimated based on expected average price 

depreciation 

∫ 𝑑 × 𝑆0 × 𝑒
−𝜆𝑡 × 𝑒−𝑟𝑡𝑑𝑡 = 𝑆0 ×

𝑑

𝑟 + 𝜆
(1 − 𝑒−(𝑟+𝜆)𝑇)

𝑇

0

 

The implied dividend rate 𝑑 is equal to 

(B.7)  𝑑 = (
𝑟 + 𝜆

1 − 𝑒−(𝑟+𝜆)𝑇
) × (

𝐷0
𝑆0
) × (𝑒−

𝑟
𝑚 ×

1 − 𝑒−
𝑟×𝑛
𝑚

1 − 𝑒−
𝑟
𝑚

) 

 

B.4 ac.APM tool implementation 

The ac.APM tool is very similar and is based on the same principals as the ac.SRM tool (which is described 

in detail in the ‘Interest Rate Options’ guide). There are however two important conceptual differences. 

► The ac.APM tool performs the valuation of the risk-neutral probabilities to calculate the value of the 

modelled instruments. Existence of risk-neutral probabilities requires the markets to be complete. 

Therefore, the process state must be approximated by a binomial tree; 

► The ac.APM tool performs both the valuation of the underlying asset (based on the asset generated 

earnings) and valuation of the derivative instruments. Therefore, derivative modelling includes two 

components: 

► Modelling earnings-generating process and estimation of the respective value of the asset; and 
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► Estimation of the risk-neutral probabilities (based on the asset value model) and estimation of 

respective derivative prices. 

The tool is applied to lease and stock price valuation but can be extended to other examples.   

B.4.1 Modelling binomial trees 

As discussed above, the ac.APM tool uses a binomial tree to model the underlying process. Note that if the 

tree has 
𝑇

𝑑𝑡
 periods, then the number of states in general growth exponentially, 𝑛 = 2

𝑇

𝑑𝑡. In the ac.SRM tool 

the problem is resolved by using a uniform discrete grid of states and matching the actual states (calculated 

based on the underlying diffusion process functions) to the nearest discrete states. The transition 

probabilities must be adjusted to ensure that the mean and standard deviation parameters of the discrete 

approximation are equal to the actual mean and standard deviation parameters. 

The matching of the mean and standard deviation parameters is feasible in general whenever a tree with 

three or larger number of branches is used.  The binomial tree does not allow applying directly the discrete 

approximation and parameters adjustment. 

The following workaround to the problem is applied in the ac.APM tool. The binomial tree is constructed in 

two steps: 

1. First, a trinomial tree with step 𝑑𝑡 is constructed and matched to the discrete states. The trinomial 

tree is constructed using the methods implemented for the ac.SRM tool.28 By default, the Hull-White 

trinomial tree is constructed. The tree is described as follows: 

𝑑𝑊𝑡 ⇒ {

𝜎√3𝑑𝑡 𝑝𝑢
0 𝑝𝑚

−𝜎√3𝑑𝑡 𝑝𝑑

 

where 𝑝𝑢 = 𝑝𝑑 =
1

6
 and 𝑝𝑚 =

2

3
. The trinomial tree models transition distribution with mean zero and 

standard deviation equal to 𝜎√𝑑𝑡. The states of the trinomial tree are matched to the nearest 

discrete states and the probability parameters of the trinomial tree are adjusted to match the mean 

and standard deviation of the transition distribution of the diffusion process. Note that for small 

enough 𝑑𝑡 parameter the adjustment is small and 𝑝𝑚 ≥
1

2
 after the adjustment. 

2. Second, the trinomial tree is converted to the binomial tree with step 
𝑑𝑡

2
 as follows. The steps of the 

tree construction process are illustrated in the diagram below. 

 

                                                      

28 Technical details of the trinomial tree construction are provided in the ‘Interest Rate Options’ guide. 

period 𝑡 

period 𝑡 + 𝑑𝑡 

state 𝑟𝑡,𝑖 

period 𝑡 +
𝑑𝑡

2
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The black lines show the trinomial tree constructed at step one. The red lines show the binomial 

extension of the trinomial tree constructed at step two. Existence of the binomial tree (and the 

required sufficient conditions) is discussed in the next section. Next section also derives the 

transition probabilities of the binomial tree which match the transition probabilities of the trinomial 

tree. 

 

B.4.2 Extension of a trinomial into a binomial tree 

Lemma: Suppose that 𝑎, 𝑏, and 1 − 𝑎 − 𝑏 are the probabilities of a trinomial tree (𝑎 > 0, 𝑏 > 0, and 1 − 𝑎 −

𝑏 > 0). Suppose also that 𝑏 ≥
1

2
). Then the one-period trinomial tree can be replicated as a two-period 

binomial tree. 

Proof.  Suppose that 𝑥 and 𝑦 are probabilities of state 𝑆𝑢 in the two periods of the binomial tree and that 

𝑆𝑢𝑑 = 𝑆𝑑𝑢 corresponds to the middle state of the trinomial tree.  We assume that probability 𝑎 corresponds 

to state 𝑆𝑢𝑢 and probability 𝑏 corresponds to state 𝑆𝑢𝑑 = 𝑆𝑑𝑢. The probabilities 𝑥 and 𝑦 are estimated from 

the following system of equations: 

{
𝑥𝑦 = 𝑎

𝑥(1 − 𝑦) + (1 − 𝑥)𝑦 = 𝑏 

The second equation can be equivalently represented as 𝑥 = 2𝑎 + 𝑏 − 𝑦. Substituting the expression for 𝑥 

into the first equation, we obtain the following quadratic equation for 𝑦: 

𝑦2 − (2𝑎 + 𝑏)𝑦 + 𝑎 = 0 

where the solution of the equation must satisfy the following constraints: 

𝑎 ≤ 𝑦 ≤ 1 

Solution of the quadratic equation is described by the following formula: 

𝑦1,2 =
(2𝑎 + 𝑏) ± √(2𝑎 + 𝑏)2 − 4𝑎

2
 

The solutions exist whenever the discriminant of the equation 𝐷 = (2𝑎 + 𝑏)2 − 4𝑎 ≥ 0. If 𝑏 ≥
1

2
, then 𝐷 ≥

(2𝑎 +
1

2
)
2

− 4𝑎 = (2𝑎 −
1

2
)
2

≥ 0. 

Of the two solutions, we pick the larger solution29 

𝑦 =
(2𝑎 + 𝑏) + √(2𝑎 + 𝑏)2 − 4𝑎

2
 

The constraint 𝑎 ≤ 𝑦 follows directly from the above equation. Next, we show that the constraint 𝑦 ≤ 1 is 

also satisfied. We show that even a stronger constraint is satisfied: 
(2𝑎+𝑏)+√(2𝑎+𝑏)2−4𝑎

2
≤ 𝑎 + 𝑏. The 

                                                      

29 Both solutions satisfy the required constraint. The constraint 
(2𝑎+𝑏)−√(2𝑎+𝑏)2−4𝑎

2
≥ 𝑎 is equivalent to 𝑏2 ≥ (2𝑎 + 𝑏)2 − 4𝑎, which is 

equivalent to 1 ≥ 𝑎 + 𝑏. 
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constraint is equivalent to the following constraint: (2𝑎 + 𝑏)2 ≤ 𝑏2 + 4𝑎 or, equivalently, 4𝑎2 + 4𝑎𝑏 ≤ 4𝑎. 

The constraint follows directly from the fact that 𝑎 + 𝑏 ≤ 1. 

QED 

Note that the assumption 𝑏 ≥
1

2
 was used only to show that 𝐷 ≥ 0. This is a sufficient but not a necessary 

assumption. 
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30 The paper is also published as Rode, D., P. Fischbeck, and S. Dean. “Residual Risk and the Valuation of Leases under 
Uncertainty and Limited Information”. Journal of Structured and Project Finance 7:4 (2002): 37-49. Online link to the paper: 
https://pdfs.semanticscholar.org/c517/301420d394a05698a876adfd74e541504758.pdf  

31 https://core.ac.uk/download/pdf/56707500.pdf  

32 Online link: https://www.researchgate.net/publication/254406042_Hedging_residual_value_risk_using_derivatives  

http://www.derivativeengines.somee.com/index-3.asp
https://pdfs.semanticscholar.org/c517/301420d394a05698a876adfd74e541504758.pdf
https://core.ac.uk/download/pdf/56707500.pdf
https://www.researchgate.net/publication/254406042_Hedging_residual_value_risk_using_derivatives
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